搜索
    上传资料 赚现金
    【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)(原卷版).docx
    • 解析
      题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)(解析版).docx
    【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)01
    【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)02
    【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)03
    【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)01
    【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)02
    【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)03
    还剩5页未读, 继续阅读
    下载需要30学贝
    使用下载券免费下载
    加入资料篮
    立即下载

    【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)

    展开
    这是一份【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则),文件包含题型073类导数综合问题解题技巧端点效应必要性探索函数的凹凸性洛必达法则原卷版docx、题型073类导数综合问题解题技巧端点效应必要性探索函数的凹凸性洛必达法则解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    技法01 端点效应(必要性探索)解题技巧
    技法02 函数凹凸性解题技巧
    技法03 洛必达法则解题技巧
    技法01 端点效应(必要性探索)解题技巧
    导数压轴中我们经常遇到恒成立问题,含有参数的不等式恒成立求参数的取值范围问题,是热点和重点题型,方法灵活多样,常见的方法有:
    ①分离参数(全分离或半分离)+函数最值;
    ②直接(或移项转化)求导+分类讨论.
    但以上两种方法都有缺陷,首先对于方法①可能会出现参数分离困难或是无法分离,抑或函数最值点无法取到,即无定义,这时就需要用到超纲的方法:洛必达法则。其次,对于方法②直接分类讨论可能会出现在某些区间无法讨论下去,或是无法排除原问题在该区间是否恒成立,即讨论界点不明。
    基于以上两点,我们今天这讲就来解决这两个不足之处,基本对策就是先必要后充分的思想。该思想就是当参变分离较为困难、带参讨论界点不明时,含参不等式问题还可以采用先必要、后充分的做法,即先抓住一些关键点(区间端点,可使不等式部分等于零的特殊值等),将关键点代入不等式解出参数的范围,获得结论成立的必要条件,再论证充分性,从而解决问题.
    知识迁移
    端点效应的类型
    1.如果函数在区间上,恒成立,则或.
    2.如果函数在区问上,恒成立,且(或),则或.
    3.如果函数在区问上,恒成立,且(或,则或.
    例1.(2023·全国·统考高考真题)已知函数
    (1)当时,讨论的单调性;
    (2)若恒成立,求a的取值范围.
    【法一】端点效应一
    令 ,得 ,且 在 上恒成立
    画出草图
    根据端点效应, 需要满足 ,而
    则 , 令 , 得
    当 时, 由于 , 只需证 即可
    而 含有参数 , 故可对 进行放缩

    令 , 其中



    则 , 故 在 上递减, 得
    则 , 得 在 上单调递增, 则
    即 , 满足 成立
    当 时,
    故存在 , 使得在 上 ,
    所以 在 上单调递增, 则 , 不成立
    特上所述: .
    【法二】端点效应二
    (2)
    由于 , 且
    ,
    注意到当 , 即 时, 使 在 成立, 故此时 单调递减
    , 不成立.
    另一方面, 当 时, , 下证它小于等于 0 .
    单调递减, . 特上所述: .
    【法三】设

    所以.
    若,
    即在上单调递减,所以.
    所以当,符合题意.

    当,所以.
    .
    所以,使得,即,使得.
    当,即当单调递增.
    所以当,不合题意.
    综上,的取值范围为.
    1.(2023·全国·统考高考真题)已知函数.
    (1)当时,讨论的单调性;
    (2)若,求的取值范围.
    【答案】(1)在上单调递减
    (2)
    【分析】(1)代入后,再对求导,同时利用三角函数的平方关系化简,再利用换元法判断得其分子与分母的正负情况,从而得解;
    (2)法一:构造函数,从而得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;
    法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.
    【详解】(1)因为,所以,


    令,由于,所以,
    所以,
    因为,,,
    所以在上恒成立,
    所以在上单调递减.
    (2)法一:
    构建,
    则,
    若,且,
    则,解得,
    当时,因为,
    又,所以,,则,
    所以,满足题意;
    当时,由于,显然,
    所以,满足题意;
    综上所述:若,等价于,
    所以的取值范围为.
    法二:
    因为,
    因为,所以,,
    故在上恒成立,
    所以当时,,满足题意;
    当时,由于,显然,
    所以,满足题意;
    当时,因为,
    令,则,
    注意到,
    若,,则在上单调递增,
    注意到,所以,即,不满足题意;
    若,,则,
    所以在上最靠近处必存在零点,使得,
    此时在上有,所以在上单调递增,
    则在上有,即,不满足题意;
    综上:.
    【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.
    2.(2020·全国·统考高考真题)已知函数.
    (1)当a=1时,讨论f(x)的单调性;
    (2)当x≥0时,f(x)≥x3+1,求a的取值范围.
    【答案】(1)当时,单调递减,当时,单调递增.(2)
    【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.
    (2)方法一:首先讨论x=0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a的取值范围.
    【详解】(1)当时,,,
    由于,故单调递增,注意到,故:
    当时,单调递减,
    当时,单调递增.
    (2) [方法一]【最优解】:分离参数
    由得,,其中,
    ①.当x=0时,不等式为:,显然成立,符合题意;
    ②.当时,分离参数a得,,
    记,,
    令,
    则,,
    故单调递增,,
    故函数单调递增,,
    由可得:恒成立,
    故当时,,单调递增;
    当时,,单调递减;
    因此,,
    综上可得,实数a的取值范围是.
    [方法二]:特值探路
    当时,恒成立.
    只需证当时,恒成立.
    当时,.
    只需证明⑤式成立.
    ⑤式,
    令,
    则,
    所以当时,单调递减;
    当单调递增;
    当单调递减.
    从而,即,⑤式成立.
    所以当时,恒成立.
    综上.
    [方法三]:指数集中
    当时,恒成立,
    记,

    ①.当即时,,则当时,,单调递增,又,所以当时,,不合题意;
    ②.若即时,则当时,,单调递减,当时,,单调递增,又,
    所以若满足,只需,即,所以当时,成立;
    ③当即时,,又由②可知时,成立,所以时,恒成立,
    所以时,满足题意.
    综上,.
    【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:
    方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;
    方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;
    方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!
    3.(2022·全国·统考高考真题)已知函数.
    (1)当时,讨论的单调性;
    (2)当时,,求a的取值范围;
    (3)设,证明:.
    【答案】(1)的减区间为,增区间为.
    (2)
    (3)见解析
    【分析】(1)求出,讨论其符号后可得的单调性.
    (2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.
    (3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.
    【详解】(1)当时,,则,
    当时,,当时,,
    故的减区间为,增区间为.
    (2)设,则,
    又,设,
    则,
    若,则,
    因为为连续不间断函数,
    故存在,使得,总有,
    故在为增函数,故,
    故在为增函数,故,与题设矛盾.
    若,则,
    下证:对任意,总有成立,
    证明:设,故,
    故在上为减函数,故即成立.
    由上述不等式有,
    故总成立,即在上为减函数,
    所以.
    当时,有,
    所以在上为减函数,所以.
    综上,.
    (3)取,则,总有成立,
    令,则,
    故即对任意的恒成立.
    所以对任意的,有,
    整理得到:,


    故不等式成立.
    【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.
    技法02 函数凹凸性解题技巧
    函数凹凸性是函数的一种特殊特征,近年来,以函数凹凸性为背景的题目屡见不鲜,这些试题情景新颖,能考查学生的创新能力和潜在的数学素质,常作为压轴题出现.虽然在高中课本中没有这方面的内容,但高中教师若能多了解一些函数凹凸性的相关理论知识,可以“登高望远”,便于找到问题的本质内涵,确定解题方向,寻找简捷的解题途径.
    知识迁移
    凹函数:对于某区间内 , 都有 .
    凸函数:对于某区间内 , 都有 .
    例2-1.在 中, 求 的最大值.
    因为函数 在区间 上是上凸函数, 则
    即 , 当且仅当 时, 即 时,取等号.
    上述例题是三角形中一个重要的不等式: 在 中,
    例2-2(2021·黑龙江模拟)丹麦数学家琴生是19世纪对数学分析做出卓越贡献的数学家,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数在上的导函数为,在上的导函数为,若在上恒成立,则称函数在上为“凸函数”.已知在上为“凸函数”,则实数m的取值范围是( )
    A.B.C.D.
    因为,
    所以,

    因为在上为“凸函数”,
    所以对于恒成立,
    可得对于恒成立,
    令,则,
    因为,所以在单调递增,
    所以,
    所以,
    【答案】C
    1.(全国·高考真题)已知函数有两个零点.
    (Ⅰ)求a的取值范围;
    (Ⅱ)设x1,x2是的两个零点,证明:.
    【答案】(Ⅰ);(Ⅱ)见解析
    【详解】试题分析:(Ⅰ)求导,根据导函数的符号来确定(主要要根据导函数零点来分类);(Ⅱ)借助(Ⅰ)的结论来证明,由单调性可知等价于,即.设,则.则当时,,而,故当时,.从而,故.
    试题解析:(Ⅰ).
    (Ⅰ)设,则,只有一个零点.
    (Ⅱ)设,则当时,;当时,.所以在单调递减,在单调递增.
    又,,取满足且,则

    故存在两个零点.
    (Ⅲ)设,由得或.
    若,则,故当时,,因此在单调递增.又当时,所以不存在两个零点.
    若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时,,所以不存在两个零点.
    综上,的取值范围为.
    (Ⅱ)不妨设,由(Ⅰ)知,,在单调递减,所以等价于,即.
    由于,而,所以

    设,则.
    所以当时,,而,故当时,.
    从而,故.
    【考点】导数及其应用
    【名师点睛】对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简.解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.
    2.(2021·全国·统考高考真题)已知函数.
    (1)讨论的单调性;
    (2)设,为两个不相等的正数,且,证明:.
    【答案】(1)的递增区间为,递减区间为;(2)证明见解析.
    【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.
    (2)方法二:将题中的等式进行恒等变换,令,命题转换为证明:,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.
    【详解】(1)的定义域为.
    由得,,
    当时,;当时;当时,.
    故在区间内为增函数,在区间内为减函数,
    (2)[方法一]:等价转化
    由得,即.
    由,得.
    由(1)不妨设,则,从而,得,
    ①令,
    则,
    当时,,在区间内为减函数,,
    从而,所以,
    由(1)得即.①
    令,则,
    当时,,在区间内为增函数,,
    从而,所以.
    又由,可得,
    所以.②
    由①②得.
    [方法二]【最优解】:变形为,所以.
    令.则上式变为,
    于是命题转换为证明:.
    令,则有,不妨设.
    由(1)知,先证.
    要证:

    令,
    则,
    在区间内单调递增,所以,即.
    再证.
    因为,所以需证.
    令,
    所以,故在区间内单调递增.
    所以.故,即.
    综合可知.
    [方法三]:比值代换
    证明同证法2.以下证明.
    不妨设,则,
    由得,,
    要证,只需证,两边取对数得,
    即,
    即证.
    记,则.
    记,则,
    所以,在区间内单调递减.,则,
    所以在区间内单调递减.
    由得,所以,
    即.
    [方法四]:构造函数法
    由已知得,令,
    不妨设,所以.
    由(Ⅰ)知,,只需证.
    证明同证法2.
    再证明.令.
    令,则.
    所以,在区间内单调递增.
    因为,所以,即
    又因为,所以,
    即.
    因为,所以,即.
    综上,有结论得证.
    【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.
    方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.
    方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.
    方法四:构造函数之后想办法出现关于的式子,这是本方法证明不等式的关键思想所在.
    3.(陕西·高考真题)已知函数.
    (1)若直线y=kx+1与f (x)的反函数的图像相切, 求实数k的值;
    (2)设x>0, 讨论曲线y=f (x) 与曲线 公共点的个数.
    (3)设a【答案】(1)
    (2)当时两曲线有2个交点;当时两曲线有1个交点;当时两曲线没有交点
    (3),理由见解析.
    【分析】(1)设切点,利用导数的几何意义得到方程组可得答案;
    (2),转化为与图象交点的个数问题;
    (3)作差得到,令,构造新函数,求导即可得到答案.
    【详解】函数
    (1)函数,的反函数为,
    设切点坐标为则,.

    (2)令即,设
    有,当,,当,
    所以函数在上单调递减,在上单调递增,
    ,所以当时,两曲线有2个交点;
    当时,两曲线有1个交点;当时,两曲线没有交点.
    (3)
    ,令
    上式
    令,则恒成立,
    ,而,,

    【点睛】本题考查函数、导数、不等式、参数等问题,属于难题.第二问运用数形结合思想解决问题,能够比较清晰的分类,做到不吃不漏.最后一问,考查函数的凹凸性,富有明显的几何意义,为考生探索结论提供了明确的方向,对代数手段的解决起到导航作用.
    技法03 洛必达法则解题技巧
    洛必达法则只是一个求极限的工具,是在一定条件下通过对分子分母分别求导再求极限来确定未定式极限值的方法。详细的洛必达法则应用是大学高等数学中才介绍,这里用高中生最能看懂的方式说明,能备考使用即可.
    知识迁移
    洛必达法则:
    法则1 若函数f(x) 和g(x)满足下列条件:
    (1) 及;
    (2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;
    (3),
    那么 =。 型
    法则2 若函数f(x) 和g(x)满足下列条件:
    (1) 及;
    (2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;
    (3),
    那么 =。 型
    注意:
    1. 将上面公式中的 换成 洛必达法则也成立。
    2. 洛必达法则可处理 型。
    3. 在着手求极限前, 首先要检查是否满足 , 型定式, 否则滥用洛必达法则会出错。当不满足三个前提条件时, 就不能用洛必达法则, 这时称洛必达法则不适用, 应从另外途径求极限。
    4. 若条件符合, 洛必达法则可连续多次使用, 直到求出极限为止。
    , 如满足条件, 可继续使用洛 必达法则。
    例3.(全国高考)已知 恒成立, 求 的取值范围
    解: 记 ,


    所以, 在 单调递增, 且
    所以 时, 时,
    即 在 上单调递减, 在 上单调递增
    所以
    所以
    分析
    上式中求 用了洛必达法则 当 时, 分子 , 分母 , 符合 不定形式, 所以
    1.(全国高考) 恒成立, 求 的取值范围
    解:
    记 ,



    所以, 在 单调递增, 所以
    所以, 在 单调递增, 所以
    即在 上 , 所以 在 上单调递增
    所以
    所以
    2.(天津高考) 恒成立, 求的取值范围
    解:
    记 ,


    所以, 当 时, 单调递减,
    所以 即
    所以
    所以
    所以
    3.(2023·江苏模拟)已知函数
    (I)求证
    (II)若取值范围.
    【答案】(I)见解析(II)
    【详解】试题分析:(1)将问题转化为证明与,从而令、,然后利用导数求得的单调性即可使问题得证;(2)由(1)中的结论得≥,从而令,通过多次求导得出其单调性即可求出的取值范围.
    试题解析:(1)要证时,,只需证明.
    记,则,
    当时,,因此在上是增函数,故,
    所以.
    要证时,,只需证明,
    记,则,
    当时,,因此在上是增函数,故,
    所以,.
    综上,,.
    (2)(解法一)
    .
    设,则,
    记,则,
    当时,,于是在上是减函数,
    从而当时,,故在上是减函数,于是,
    从而,
    所以,当时,在上恒成立.
    下面证明,当时,在上不恒成立,
    .
    记,则,
    当时,,故在上是减函数.
    于是在上的值域为.
    因为当时,,所以存在,使得此时,即在上不恒成立.
    综上,实数的取值范围是.
    (解法二)
    先证当时,.
    记,则,
    记,则,当时,,于是在上是增函数,因此当时,,从而在上是增函数,因此.
    所以当时,.
    同理可证,当时,.
    综上,当时,.
    因为当时,

    所以当时,在上恒成立.
    下面证明,当时,在上不恒成立,因为
    .
    所以存在(例如取和中的较小值)满足.
    即在上不恒成立.
    综上,实数的取值范围是.
    考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.
    【方法点睛】求证不等式,一种常见思路是用图像法来说明函数的图像在函数图像的上方,但通常不易说明.于是通常构造函数,通过导数研究函数的性质,进而证明欲证不等式.
    相关试卷

    【备战2024年高考】高中数学重点题型解剖 题型04 函数图象问题解题技巧(奇偶性 特值法 极限法): 这是一份【备战2024年高考】高中数学重点题型解剖 题型04 函数图象问题解题技巧(奇偶性 特值法 极限法),文件包含题型04函数图象问题解题技巧奇偶性+特值法+极限法原卷版docx、题型04函数图象问题解题技巧奇偶性+特值法+极限法解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    【备战2024年高考】高中数学重点题型解剖 题型03 “奇函数 常函数”的最大值 最小值及f(a) f(-a)解题技巧: 这是一份【备战2024年高考】高中数学重点题型解剖 题型03 “奇函数 常函数”的最大值 最小值及f(a) f(-a)解题技巧,文件包含题型03“奇函数+常函数”的最大值+最小值及fa+f-a解题技巧原卷版docx、题型03“奇函数+常函数”的最大值+最小值及fa+f-a解题技巧解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    【备战2024年高考】高中数学重点题型解剖 题型02 函数的4大基本性质解题技巧(单调性、奇偶性、周期性、对称性): 这是一份【备战2024年高考】高中数学重点题型解剖 题型02 函数的4大基本性质解题技巧(单调性、奇偶性、周期性、对称性),文件包含题型02函数的4大基本性质解题技巧单调性奇偶性周期性对称性原卷版docx、题型02函数的4大基本性质解题技巧单调性奇偶性周期性对称性解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:0份资料
    • 充值学贝下载 90%的用户选择 本单免费
    • 扫码直接下载
    选择教习网的 4 个理由
    • 更专业

      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿

    • 更丰富

      涵盖课件/教案/试卷/素材等各种教学资源;500万+优选资源 ⽇更新5000+

    • 更便捷

      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤

    • 真低价

      超⾼性价⽐, 让优质资源普惠更多师⽣

    开票申请 联系客服
    本次下载需要:0学贝 0学贝 账户剩余:0学贝
    本次下载需要:0学贝 原价:0学贝 账户剩余:0学贝
    了解VIP特权
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送

        扫码支付后直接下载

        0元

        扫码支付后直接下载

        使用学贝下载资料比扫码直接下载优惠50%
        充值学贝下载,本次下载免费
        了解VIP特权
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付(支持花呗)

        到账0学贝
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付 (支持花呗)

          下载成功

          Ctrl + Shift + J 查看文件保存位置

          若下载不成功,可重新下载,或查看 资料下载帮助

          本资源来自成套资源

          更多精品资料

          正在打包资料,请稍候…

          预计需要约10秒钟,请勿关闭页面

          服务器繁忙,打包失败

          请联系右侧的在线客服解决

          单次下载文件已超2GB,请分批下载

          请单份下载或分批下载

          支付后60天内可免费重复下载

          我知道了
          正在提交订单

          欢迎来到教习网

          • 900万优选资源,让备课更轻松
          • 600万优选试题,支持自由组卷
          • 高质量可编辑,日均更新2000+
          • 百万教师选择,专业更值得信赖
          微信扫码注册
          qrcode
          二维码已过期
          刷新

          微信扫码,快速注册

          还可免费领教师专享福利「樊登读书VIP」

          手机号注册
          手机号码

          手机号格式错误

          手机验证码 获取验证码

          手机验证码已经成功发送,5分钟内有效

          设置密码

          6-20个字符,数字、字母或符号

          注册即视为同意教习网「注册协议」「隐私条款」
          QQ注册
          手机号注册
          微信注册

          注册成功

          下载确认

          下载需要:0 张下载券

          账户可用:0 张下载券

          立即下载

          如何免费获得下载券?

          加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

          即将下载

          【备战2024年高考】高中数学重点题型解剖 题型07 3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)

          该资料来自成套资源,打包下载更省心

          [共10份]
          浏览全套
            立即下载(共1份)
            返回
            顶部