搜索
    上传资料 赚现金
    北京市一零一中学高中化学竞赛第1讲 气体.doc练习题
    立即下载
    加入资料篮
    北京市一零一中学高中化学竞赛第1讲 气体.doc练习题01
    北京市一零一中学高中化学竞赛第1讲 气体.doc练习题02
    北京市一零一中学高中化学竞赛第1讲 气体.doc练习题03
    还剩4页未读, 继续阅读
    下载需要10学贝
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市一零一中学高中化学竞赛第1讲 气体.doc练习题

    展开
    这是一份北京市一零一中学高中化学竞赛第1讲 气体.doc练习题,共7页。

    【竞赛要求】
    气体。理想气体标准状态。理想气体状态方程。气体密度。分压定律。气体相对分子质量测定原理。
    【知识梳理】
    一、气体 气体、液体和固体是物质存在的三种状态。气体的研究对化学学科的发展起过重大作用。气体与液体、固体相比较,具有两个明显特点。
    1、扩散性 当把一定量的气体充入真空容器时,它会迅速充满整个容器空间,而且均匀分布,少量气体可以充满很大的容器,不同种的气体可以以任意比例均匀混合。
    2、可压缩性
    当对气体加压时,气体体积缩小,原来占有体积较大的气体,可以压缩到体积较小的容器中。
    二、理想气体
    如果有这样一种气体:它的分子只有位置而无体积,且分子之间没有作用力,这种气体称之为理想气体。当然它在实际中是不存在的。实际气体分子本身占有一定的体积,分子之间也有吸引力。但在低压和高温条件下,气体分子本身所占的体积和分子间的吸引力均可以忽略,此时的实际气体即可看作理想气体。
    三、理想气体定律
    1、理想气体状态方程
    将在高温低压下得到的波义耳定律、查理定理和阿佛加德罗定律合并,便可组成一个方程:
    pV= nRT (1-1) 这就是理想气体状态方程。
    式中p是气体压力,V是气体体积,n是气体物质的量,T是气体的绝对温度(热力学温度,即摄氏度数+273),R是气体通用常数。
    在国际单位制中,它们的关系如下表:
    表1-1 R的单位和值
    (1-1)式也可以变换成下列形式:pV= RT (1-2)
    p = · = 则: = (1-3)
    式中m为气体的质量,M为气体的摩尔质量,为气体的密度。
    对于一定量(n一定)的同一气体在不同条件下,则有: = (1-4)
    如果在某些特定条件下,将(1-1)、(1-2)和(1-3)式同时应用于两种不同的气体时,又可以得出一些特殊的应用。
    如将(1-1)式n =,在等温、等压、等容时应用于各种气体,则可以说明阿佛加德罗定律。因为物质的量相等的气体,含有相等的分子数。
    若将(1-2)式 = 在等温、等压和等容时应用于两种气体,则得出: = (1-5)
    如果将(1-3)式= ,在等温等压下应用于两种气体,则有: = (1-6)
    若令 = D ,D为第一种气体对第二种气体得相对密度,则有:D = 或 M1 = DM2 (1-7)
    已知M = 2g·ml,= 29g·ml
    则 M1 = 2 D 或 M1 = 29D
    D为某气体相对H2的密度,D为某气体相对空气的密度。
    2、气体分压定律和分体积定律
    (1)气体分压定律
    当研究对象不是纯气体,而是多组分的混合气体时,由于气体具有均匀扩散而占有容器全部空间的特点,无论是对混合气,还是混合气中的每一组分,均可按照理想气体状态方程式进行计算。
    当一个体积为V的容器,盛有A、B、C三种气体,其物质的量分别为nA、nB、nC,每种气体具有的分压分别是pA、pB、pC,则混合气的总物质的量为: n= nA + nB + nC (1-8)
    混合气的总压为: p = pA + pB + pC (1-9)
    在一定温度下,混合气体的总压力等于各组分气体的分压力之和。这就是道尔顿分压定律。
    计算混合气各组分的分压有两种方法。
    = 1 \* GB3 ①根据理想气态方程计算
    在一定体积的容器中的混合气体pV = nRT ,混合气中各组分的分压,就是该组分单独占据总体积时所产生的压力,其分压数值也可以根据理想气态方程式求出:
    pAV = nART (1-10) pBV = nBRT (1-11) pCV = nCRT (1-12)
    = 2 \* GB3 ②根据摩尔分数计算:
    摩尔分数(XA)为混合气中某组分A的物质的量与混合气的总的物质的量之比: XA = (1-13)
    混合气体中某组分的分压等于总压与摩尔分数的乘积: pA = pXA (1-14)
    (2)气体分体积定律
    在相同的温度和压强下,混合气的总体积(V)等于组成混合气的各组分的分体积之和:
    V = VA +VB + VC (1-15)
    这个定律叫气体分体积定律。
    根据混合物中各组分的摩尔分数等于体积分数,可以计算出混合气中各组分的分体积:
    据 = 得 VA = V (1-16)
    四、实际气体状态方程
    理想气体定律是从实验中总结出来的,并得到了理论上的解释。但应用实际气体时,它只有一定的适用范围(高温低压),超出这个范围就有偏差,必须加以修正。
    对于实际气体的实验值与理想值的偏差,我们常用压缩系数Z来表示:Z =
    其中p、、T都是实验值。若气体完全理想,则Z = 1,否则Z>1或Z<1。
    出现这种偏差,是由于实际气体分子本身的体积不容忽视,那么实测体积总是大于理想状态体积(即V = V – b);实际上分子之间也不可能没有吸引力(内聚力P),这种吸引力使气体对器壁碰撞产生的压力减小,使实测压力要比理想状态压力小(即p = p + p),所以Z<1。实际上以上两种因素同时存在,前者起主导作用时,Z>1,后者起主导作用时,Z<1,若两种因素恰好相当,则Z = 1(CO2在40℃和52 MPa时)。
    将以上修正项代入理想气体状态方程,即得: (p + p)(– b) = RT
    p既与容器内部得分子数目成正比,又与近壁分子数目成正比。这两种分子数目又都与气体的密度成正比,所以 p2
    而,所以 p()2 或 p =
    则 (p +)(– b) = RT
    对于n摩尔气体来说,则, (p + )(V – nb)= nRT (1-17)
    注意,上式中p、V、T都是实测值;a和b都是气体种类有关的特性常数,统称为范德华常数。(1-17)式称为范德华方程。它是从事化工设计必不可少的依据。
    五、气体相对分子质量测定原理
    1、气体相对分子质量测定
    由(1-3)式: = ,可以变换成以下形式:M = (1-18)
    可见,在一定温度和压强下,只要测出某气体的密度,就可以确定它的相对分子质量。
    2、气体精确相对分子质量测定
    根据M = RT,理想气体在恒温下的/p值应该是一个常数,但实际情况不是这样。如:在273 K时测得CH3F蒸气在不同压力下的值及/p值如下表:
    从表中数据可以看到,压力越大,/p越大,不是常数。因为压力越大,气体分子间的吸引力越大 ,分子本身的体积也不能忽略,因而就不能用理想气体状态方程来描述了,所以对于实际气体/p不是一个常数。
    以/p对作图(图1-1)
    如果将直线内推到p = 0时,则CH3F这一实际气体已接近理想气体,所以从图上所得的(/p) = 1.50×10-2是符合理想气体状态方程的。若将(/p) 之值代入理想气体状态方程M = RT,即可求得CH3F的精确分子量。这种求气体分子量的方法,叫极限密度法。 M = ()RT = 1.50×10-2g·dm-3·k Pa-1×8.314 k Pa·dm3·ml-1·K-1×273.16K = 34.05 g·ml-1
    故CH3F的分子量为34.02。
    按相对原子质量计算:M = 12.011 + 3×1.0079 + 18.9984 = 34.033
    两者结果非常接近。
    【典型例题】
    例1、300K、3.30×105 Pa时,一气筒含有480g的氧气,若此筒被加热到373K,然后启开活门(温度保持373K)一直到气体压强降低到1.01×105 Pa时,问共放出多少重的氧气?
    分析:因为pV =nRT,n = ;所以pV = RT,由此式求出气筒的体积。
    然后再根据气态方程式求出压强降到1.01×105 Pa,气筒内剩余氧气的质量m。
    最后算出放出氧气的质量。
    解:pV = RT
    则气筒的体积:
    V = = = 0.123 m3
    再根据方程式求压强降低到1.01×105 Pa时,气筒内剩余氧气的质量m
    m = = = 128 g
    因此放出氧气的质量m= 480-128 = 352 g
    例2、设有一真空的箱子,在288 K时,1.01×105 Pa的压力下,称量为153.679 g,假若在同温同压下,充满氯气后为156.844 g;充满氧气后为155.108 g,求氯气的分子量。
    分析:M=32.00g·ml-1,若将pV= RT 式先用于氧气 ,求出箱子的体积V,再将 pV= RT式用于氯气,求出M,这当然是可行的。但运算繁杂,既费时又易出错。由题意可知,这实际上是在等温、等压和等容条件下,pV= RT式的两次应用。所以可以直接用 = 式,则简便得多。
    解:M= 155.108g - 153.679g = 1.429g
    M= 156.844g - 153.679g =3.165g
    ∴ M= = = 70.87g·ml-1
    故氯气的分子量为70.87。
    例3、某砷的氧化物化学式为As2O3,加热升温气化,实验测得在101 k Pa和844 K时,其蒸气密度为5.70 g/L。计算:
    该氧化物的相对分子质量,并求其分子式。
    分析:依据题目给出的一定温度和压强下的气体密度,可以算出气体的相对分子质量。
    由pV= nRT 可得 M = 因为 = , 所以 M =
    根据化学式As2O3可以算出式量,用相对分子质量除以式量,即可确定气态氧化物的分子式。
    解:气态氧化物的相对分子质量(M)为:
    M = = = 396
    As2O3的式量为:75×2+16×3 =198
    所以,在气态时这种砷的氧化物的分子式是As4O6 。
    例4、在298K,101000 Pa时,用排水集气法收集氢气,收集到335 mL。已知298K时水的饱和蒸气压为3200 Pa,计算:
    (1)氢气的分压是多少? (2)收集的氢气的物质的量为多少?
    (3)这些氢气干燥后的体积是多少(干燥后气体温度,压强视为不变)?
    分析:用排水集气法收集的氢气,实际上是氢气和水蒸气的混合气。可由气体分压定律:p = p + p ,计算得氢气的分压。
    再利用理想气体气态方程式:pV = nRT求出氢气的物质的量n ,根据p = p· 算出V 。
    解:(1)混合气中氢气的分压p为:
    p = p - p = 101000 Pa -3200 Pa = 97800 Pa
    (2)所得氢气的物质的量n (H2)
    n = = = 0.0140 ml
    注意:R = 8.314(Pa·m3·ml-1·K-1) ,V必须用m3作单位,355 mL一定要换算成355×10-6 m3。
    (3)所得干燥氢气得体积V为:
    V= V× = 355 mL× = 344mL
    【知能训练】
    1、在678 K,2.96 g氯化汞在体积为1.00 L的真空容器中蒸发,其压强为6.09×104 Pa,计算氯化汞的摩尔质量。
    2、现有A、B两容器,A容器中装有体积为6.0 L压强为9.09×105 Pa的氮气,B容器中装有体积为12.0 L,压强为3.03×105 Pa的氧气,A、B两容器间由活塞连接,当打开活塞两气体均匀混合后,在温度不变时计算氮气、氧气的分压。
    3、人在呼吸时,吸入的空气与呼出的气体组成不同。一健康人在310 K,1.01×105 Pa时,吸入的空气体积分数约为:N2 79 %;O2 21.0 %。
    而呼出的气体体积分数:约为:N2 75.1 %;O2 15.2 %;CO2 3.80 %;H2O5.9 %。
    (1)试计算呼出气体的平均摩尔质量及CO2的分压;
    (2)用计算结果说明呼出的空气比吸入的空气的密度是大还是小。
    4、相对湿度的定义为:在某一温度时,空气中水蒸气的分压与同温度应有的饱和水蒸气压之比。试计算:
    (1)303 K,相对湿度为100 % 时1 L空气中含水汽之质量;
    (2)323 K,相对湿度为80 % 时1 L空气中含水汽之质量。
    (已知:水的饱和蒸气压:303 K - 4239.6 Pa,323K - 12332.3 Pa)
    5、在300 K、1.013×105 Pa时,加热一敞口细颈瓶到500 K,然后封闭其细颈口,并冷至原来的温度,求此时瓶内的压强。
    6、在1.32 L容器中充入1 ml CO2气体,加热至321 K,分别用理想气态方程式和范德华方程计算气体的压强。
    (CO2的范德华常数:a = 3.64×10-1 m6·Pa·ml-2,b = 4.27×10-5 m3·ml-1)
    7、在273K和1.01×105 Pa下,将1.0 dm3洁净干燥的空气缓慢通过CH3OCH3液体,在此过程中,液体损失0.0335 g,求此液体273 K时的饱和蒸气压。
    8、在273K时,O2在不同压强下的p值如下表:
    用作图外推法(将p对p作图)求在标准状况时O2的摩尔体积。
    9、某实验测出人类呼吸中各种气体的分压/Pa如下表所示:
    (1)请将各种气体的分子式填入上表。
    (2)指出表中第一种和第二种呼出气体的分压小于吸入气体分压的主要原因。
    10、无水氯化铝可用干燥的氯化氢气体与铝加热制得,今以2.7g铝与标态下7.84L HCl作用。然后在1.013×105 Pa、546K下(此时氯化铝也为气体)测得气体总体积为11.2L。试通过计算写出气态氯化铝的分子式。
    11、温度为0℃时,三甲胺的密度是压力的函数,有人测得了如下数据:
    试根据以上数据,计算三甲胺的分子量。
    12、两个体积相等的玻璃球,中间用细管连通(其体积不计),开始时两球温度均为300K,共含0.7ml H2,其压强为0.5×P0(P0为标准压力,其值为101.325KPa,1Kp=103Pa)。若将(甲)球放入400K油浴中,而(乙)球仍为300K。求两球内的压强和H2的物质的量。
    13、在科学院出版物《化学指南》里有下列一些物质饱和蒸气压的数据:
    ①.根据所列数字计算蒸气的摩尔质量(假设蒸气中的分子类似理想气体分子)
    ②.如何解释相对质量的理论值与所得计算值之间的偏差?对此给出定性的并尽可能定量的解释。
    14、某温、某压下取三份等体积无色气体A,于25、80及90℃测得其摩尔质量分别为58.0、20.6、20.0g/ml。于25、80、90℃下各取11dm3(气体压力相同)上述无色气体分别溶于10dm3水中,形成的溶液均显酸性。
    (1)无色气体为 ; (2)各温度下摩尔质量不同的可能原因是:
    (3)若三份溶液的体积相同(设:溶解后溶液温度也相同),其摩尔浓度的比值是多少?
    15、测定相对分子质量的一个实验步骤为(其装置如右图所示):取一干燥的250mL圆底烧瓶、封口用铝箔和棉线一起称量(称准到0.1g),得m1。往烧瓶内加入大约2mL四氯化碳(沸点为76.7℃),用铝箔和棉线封口并在铝箔上穿一小孔。把烧瓶迅速浸入盛于大烧杯内的沸水中,继续保持(水的)沸腾。待四氯化碳全部汽化后,从水中取出烧瓶冷却。擦干烧瓶外的水后称量(准确到0.1g),得m2。倒出瓶内的液态四氯化碳,充满水,量体积(室温时水的密度大约1g/cm3)。按理想气体公式pV=mRT/M求四氯化碳的相对分子质量(M)。式中p为压强(Pa),V为体积(L),m为四氯化碳的质量(g),R为气体常数8.314J/K·ml,T为绝对温度。
    请考虑并回答以下几个问题:
    (1)把烧杯放入沸水中,为什么要保持沸腾?
    (2)如果在铝箔上开的孔较大,又在瓶内液态四氯化碳挥发完后过了一段时间才从热水中取出烧瓶,其他操作均正常。按以上不正确操作所得的实验数据求四氯化碳的相对分子质量将偏大还是偏小?
    (3)用水充满烧瓶再量其体积,实验前忘了倒出原先在瓶内的液态四氯化碳,是否会对实验结果造成影响?
    (4)把烧瓶放入沸水,要尽可能没入。事实上用这个装置求相对分子质量时很难做到将烧瓶完全没入水中,而总有部分露在水面上(见图),这是否会对实验结果造成影响?
    参考答案:
    1、pV= nRT n = 所以pV= RT M = 代入计算得 M = 274(g·ml-1)
    2、p= 9.09×105 Pa× = 3.03×105 Pa p= 3.03×105 Pa× = 2.02×105 Pa
    3、(1)(呼)=28.0g·ml-1×75.1 % +32.0g·ml-1×15.2 %×44.0g·ml-1×3.8 % + 18.0 g·ml-1×5.9 % = 28.6g·ml-1 p= 1.01 Pa×105×3.8 % =3.84×103 Pa
    (2)(吸)= 28.0 g·ml-1×79 % +32.0 g·ml-1×21.0 % =28.8g·ml-)
    因为(呼)<(吸)所以呼出的空气比吸入的空气的密度小。
    4、(1)303 K空气中水汽的分压为: ×100% = 100%
    p= 4239.6 Pa 代入m = 得 m = 0.03 g
    (2)同理 m = 0.07 g
    5、6.08×104 Pa 6、1.88×106 Pa 7、1.63×103 Pa
    8、将P对p作图得直线,直线外延到p→0,时,求得p为22.41Pa·dm3ml-1
    理想气体的p不随压强变化,由图知,在标准状况下O2的摩尔体积为22.414(dm3ml-1)
    9、N2 O2 CO2 H2O
    呼出气中的N2的分压小于吸入气中的分压的主要原因是呼出气中的CO2和水蒸气有较大分压,总压不变,因而N2的摩尔分数下降;呼出气中的O2的分压小于吸入气中的分压的主要原因是吸入的O2被人体消耗了。
    10、(AlCl3)2 11、59.14 12、0.572 P0 甲球0.3 ml 乙球0.4 ml
    13、①M(C6H6)=78.5g/ml M(CH3OH)=33g/ml M①(HAc)=118.9g/ml M②(HAc)=99.8 g/ml
    ②误差是由蒸气分子的性质偏离理想气体分子的性质引起的。此外在甲醇分子中有少量的分子缔合,而在醋酸分子中有二聚分子(CH3COOH)2。
    14、(1)HF (2)HF以氢键结合之故。
    (3)在稀溶液中其摩尔浓度之比(25、80、90℃)为:2.90︰1.03︰1.00
    15、(1)沸水温度高于CCl4的沸点(76.5℃),使CCl4迅速汽化并充满烧瓶,CCl4蒸气是100℃、常压下的体积。
    (2)将有部分CCl4蒸气逸出,使瓶内含少量空气,冷凝得到的CCl4质量较小,pV/RT= m/M,等号左边为定值,等号右边质量小了,CCl4的摩尔质量偏小。
    (3)烧瓶体积是250 mL,CCl4密度大约1.5 g/mL,冷凝的液态CCl4的体积大约为1 mL,若未倒掉CCl4,则烧瓶(瓶内质量换算成)容积将增大1 mL。引入误差0.4%,低于约2 mL CCl4的质量约3g(标准到0.1g),相对误差3%,影响不大。
    (4)未全部没入,表明瓶内部分空间低于100℃(在相同压强下),这部分空间的CCl4蒸气的温度比100℃下降许多。若露在水面上空间小,不会影响到实验结果。p
    V
    n
    T
    R
    国际单位制
    Pa
    m3
    ml
    K
    8.314或
    kPa
    dm3
    ml
    K
    8.314
    p/Pa
    /(g·m-3)
    /(p·10-2)
    1.013×105
    1.5454×103
    1.5255
    6.753×105
    1.0241×103
    1.5212
    3.375×104
    0.5091×103
    1.5084
    p/105Pa
    1.0000
    0.7500
    0.5000
    0.2500
    p/105Pa·dm3·ml-1
    22.3929
    22.3979
    2.4034
    22.4088
    气体
    吸入气体
    呼出气体
    79274
    75848
    21328
    15463
    40
    3732
    667
    6265
    p/atm
    0.2
    0.4
    0.6
    0.8
    d/g·L-1
    0.533 6
    1.079
    1.636 3
    2.205 4
    物质
    温度℃
    蒸气压mmHg柱
    密度g/L
    苯 C6H6
    80.1
    760
    2.710
    甲醇CH3OH
    49.9
    400
    0.673
    醋酸CH3COOH①
    29.9
    20
    0.126
    醋酸CH3COOH②
    118.1
    760
    3.110
    相关试卷

    第20讲 常见气体的性质(含解析)-2024年江苏省普通高中学业水平合格性考试复习: 这是一份第20讲 常见气体的性质(含解析)-2024年江苏省普通高中学业水平合格性考试复习,共11页。试卷主要包含了气体的制备,气体的性质等内容,欢迎下载使用。

    全国高中学生化学竞赛(决赛)理论试题14版: 这是一份全国高中学生化学竞赛(决赛)理论试题14版,共7页。

    2023届北京市一零一中学高三下学期三模化学试卷: 这是一份2023届北京市一零一中学高三下学期三模化学试卷,共12页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:0份资料
    • 充值学贝下载 90%的用户选择 本单免费
    • 扫码直接下载
    选择教习网的 4 个理由
    • 更专业

      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿

    • 更丰富

      涵盖课件/教案/试卷/素材等各种教学资源;500万+优选资源 ⽇更新5000+

    • 更便捷

      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤

    • 真低价

      超⾼性价⽐, 让优质资源普惠更多师⽣

    开票申请 联系客服
    本次下载需要:0学贝 0学贝 账户剩余:0学贝
    本次下载需要:0学贝 原价:0学贝 账户剩余:0学贝
    了解VIP特权
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送

        扫码支付后直接下载

        0元

        扫码支付后直接下载

        使用学贝下载资料比扫码直接下载优惠50%
        充值学贝下载,本次下载免费
        了解VIP特权
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付(支持花呗)

        到账0学贝
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付 (支持花呗)

          下载成功

          Ctrl + Shift + J 查看文件保存位置

          若下载不成功,可重新下载,或查看 资料下载帮助

          本资源来自成套资源

          更多精品资料

          正在打包资料,请稍候…

          预计需要约10秒钟,请勿关闭页面

          服务器繁忙,打包失败

          请联系右侧的在线客服解决

          单次下载文件已超2GB,请分批下载

          请单份下载或分批下载

          支付后60天内可免费重复下载

          我知道了
          正在提交订单

          欢迎来到教习网

          • 900万优选资源,让备课更轻松
          • 600万优选试题,支持自由组卷
          • 高质量可编辑,日均更新2000+
          • 百万教师选择,专业更值得信赖
          微信扫码注册
          qrcode
          二维码已过期
          刷新

          微信扫码,快速注册

          还可免费领教师专享福利「樊登读书VIP」

          手机号注册
          手机号码

          手机号格式错误

          手机验证码 获取验证码

          手机验证码已经成功发送,5分钟内有效

          设置密码

          6-20个字符,数字、字母或符号

          注册即视为同意教习网「注册协议」「隐私条款」
          QQ注册
          手机号注册
          微信注册

          注册成功

          下载确认

          下载需要:0 张下载券

          账户可用:0 张下载券

          立即下载

          如何免费获得下载券?

          加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

          返回
          顶部