搜索
    上传资料 赚现金
    中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析
    立即下载
    加入资料篮
    中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析01
    中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析02
    中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析03
    还剩61页未读, 继续阅读
    下载需要10学贝
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析

    展开
    这是一份中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析,共64页。试卷主要包含了选择题等内容,欢迎下载使用。

    1. .(2018•山东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )
    A.B.C.D.
    【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.
    【解答】解:过点F作FG⊥AB于点G,
    ∵∠ACB=90°,CD⊥AB,
    ∴∠CDA=90°,
    ∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,
    ∵AF平分∠CAB,
    ∴∠CAF=∠FAD,
    ∴∠CFA=∠AED=∠CEF,
    ∴CE=CF,
    ∵AF平分∠CAB,∠ACF=∠AGF=90°,
    ∴FC=FG,
    ∵∠B=∠B,∠FGB=∠ACB=90°,
    ∴△BFG∽△BAC,
    ∴=,
    ∵AC=3,AB=5,∠ACB=90°,
    ∴BC=4,
    ∴=,
    ∵FC=FG,
    ∴=,
    解得:FC=,
    即CE的长为.
    故选:A.
    【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.
    2. (2018•山东滨州•3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为( )
    A.(5,1)B.(4,3)C.(3,4)D.(1,5)
    【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标.
    【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
    ∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,
    又∵A(6,8),
    ∴端点C的坐标为(3,4).
    故选:C.
    【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.
    3 (2018•江苏扬州•3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:
    ①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是( )
    A.①②③B.①C.①②D.②③
    【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;
    (2)通过等积式倒推可知,证明△PAM∽△EMD即可;
    (3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.
    【解答】解:由已知:AC=AB,AD=AE

    ∵∠BAC=∠EAD
    ∴∠BAE=∠CAD
    ∴△BAE∽△CAD
    所以①正确
    ∵△BAE∽△CAD
    ∴∠BEA=∠CDA
    ∵∠PME=∠AMD
    ∴△PME∽△AMD

    ∴MP•MD=MA•ME
    所以②正确
    ∵∠BEA=∠CDA
    ∠PME=∠AMD
    ∴P、E、D、A四点共圆
    ∴∠APD=∠EAD=90°
    ∵∠CAE=180°﹣∠BAC﹣∠EAD=90°
    ∴△CAP∽△CMA
    ∴AC2=CP•CM
    ∵AC=AB
    ∴2CB2=CP•CM
    所以③正确
    故选:A.
    【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.
    4 (2018·山东临沂·3分)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是( )
    A.9.3mB.10.5mC.12.4mD.14m
    【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.
    【解答】解:∵EB∥CD,
    ∴△ABE∽△ACD,
    ∴=,即=,
    ∴CD=10.5(米).
    故选:B.
    【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.
    5(2018·山东潍坊·3分)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为( )
    A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)
    C.(m,n)D.(m,n)或(﹣m,﹣n)
    【分析】根据位似变换的性质计算即可.
    【解答】解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,
    则点P的对应点的坐标为(m×2,n×2)或(m×(﹣2),n×(﹣2)),即(2m,2n)或(﹣2m,﹣2n),
    故选:B.
    【点评】本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
    6.(2018•湖南省永州市•4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为( )
    A.2B.4C.6D.8
    【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;
    【解答】解:∵∠A=∠A,∠ADC=∠ACB,
    ∴△ADC∽△ACB,
    ∴=,
    ∴AC2=AD•AB=2×8=16,
    ∵AC>0,
    ∴AC=4,
    故选:B.
    【点评】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.
    7 (2018·四川宜宾·3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
    A.2B.3C.D.
    【考点】Q2:平移的性质.
    【分析】由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知()2=,据此求解可得.
    【解答】解:如图,
    ∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,
    ∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
    ∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
    ∴A′E∥AB,
    ∴△DA′E∽△DAB,
    则()2=,即()2=,
    解得A′D=2或A′D=﹣(舍),
    故选:A.
    【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.
    8(2018·四川自贡·4分)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为( )
    A.8B.12C.14D.16
    【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.
    【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,
    ∴DE∥BC,DE=BC,
    ∴△ADE∽△ABC,
    ∵=,
    ∴=,
    ∵△ADE的面积为4,
    ∴△ABC的面积为:16,
    故选:D.
    【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.
    9(2018·台湾·分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?( )
    A.只使用苹果
    B.只使用芭乐
    C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多
    D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多
    【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.
    【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,
    ∴设苹果为9x颗,芭乐7x颗,铆钉6x颗(x是正整数),
    ∵小柔榨果汁时没有使用柳丁,
    ∴设小柔榨完果汁后,苹果a颗,芭乐b颗,
    ∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,
    ∴,,
    ∴a=9x,b=x,
    ∴苹果的用量为9x﹣a=9x﹣9x=0,
    芭乐的用量为7x﹣b=7x﹣x=x>0,
    ∴她榨果汁时,只用了芭乐,
    故选:B.
    【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键.
    10 (2018·台湾·分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?( )
    A.2:1B.3:2C.5:2D.9:4
    【分析】只要证明△ADE∽△FGH,可得=()2,由此即可解决问题;
    【解答】解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,
    ∵DE∥BC,FG∥AB,FH∥AC,
    ∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,
    ∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,
    ∴△ADE∽△FGH,
    ∴=()2=()2=.
    故选:D.
    【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
    11.(2018•湖北荆门•3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG:S△ABG=( )
    A.1:3B.3:1C.1:9D.9:1
    【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;
    【解答】解:∵四边形ABCD是平行四边形,
    ∴CD=AB,CD∥AB,
    ∵DE=EF=FC,
    ∴EF:AB=1:3,
    ∴△EFG∽△BAG,
    ∴=()2=,
    故选:C.
    【点评】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    12.(2018•湖北恩施•3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为( )
    A.6B.8C.10D.12
    【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.
    【解答】解:∵四边形ABCD为正方形,
    ∴AB=CD,AB∥CD,
    ∴∠ABF=∠GDF,∠BAF=∠DGF,
    ∴△ABF∽△GDF,
    ∴==2,
    ∴AF=2GF=4,
    ∴AG=6.
    ∵CG∥AB,AB=2CG,
    ∴CG为△EAB的中位线,
    ∴AE=2AG=12.
    故选:D.
    【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.
    13. (2018·浙江临安·3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )
    A.B.C.D.
    【考点】相似三角形的判定,
    【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.
    【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,
    A、C、D图形中的钝角都不等于135°,
    由勾股定理得,BC=,AC=2,
    对应的图形B中的边长分别为1和,
    ∵=,
    ∴图B中的三角形(阴影部分)与△ABC相似,
    故选:B.
    【点评】本题考查的是相似三角形的判定,掌握两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键.

    14(2018·浙江临安·3分)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为( )
    A.B.C.D.
    【考点】相似三角形的判定和相似三角形的性质
    【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.
    【解答】解:∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴===.
    故选:A.
    【点评】本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错.

    15(2018·重庆(A)·4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为,则它的最长边为
    【考点】相似三角形的性质
    【解析】利用相似三角形三边对应成比例解出即可。
    【解答】解:设所求最长边为xcm∵两三角形相似,∴,∴. 故选C
    【点评】此题主要考查相似三角形的性质——相似三角形的三边对应成比例,该题属于中考当中的基础题。
    16(2018·广东·3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )
    A.B.C.D.
    【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.
    【解答】解:∵点D、E分别为边AB、AC的中点,
    ∴DE为△ABC的中位线,
    ∴DE∥BC,
    ∴△ADE∽△ABC,
    ∴=()2=.
    故选:C.
    【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.
    17.(2018年四川省内江市)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为( )
    A.1:1B.1:3C.1:6D.1:9
    【考点】S7:相似三角形的性质.
    【分析】利用相似三角形面积之比等于相似比的平方,求出即可.
    【解答】解:已知△ABC与△A1B1C1相似,且相似比为1:3,
    则△ABC与△A1B1C1的面积比为1:9,
    故选:D.
    【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键.
    二.填空题
    1(2018年四川省南充市)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF= .
    【考点】S9:相似三角形的判定与性质;KJ:等腰三角形的判定与性质.
    【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.
    【解答】解:∵DE∥BC,
    ∴∠F=∠FBC,
    ∵BF平分∠ABC,
    ∴∠DBF=∠FBC,
    ∴∠F=∠DBF,
    ∴DB=DF,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴,即,
    解得:DE=,
    ∵DF=DB=2,
    ∴EF=DF﹣DE=2﹣,
    故答案为:
    【点评】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.
    2 (2018四川省绵阳市)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于点O,则AB=________.
    【答案】
    【考点】勾股定理,三角形中位线定理,相似三角形的判定与性质
    【解析】【解答】解:连接DE,
    ∵AD、BE为三角形中线,
    ∴DE∥AB,DE= AB,
    ∴△DOE∽△AOB,
    ∴ = = = ,
    设OD=x,OE=y,
    ∴OA=2x,OB=2y,
    在Rt△BOD中,
    x2+4y 2=4 ①,
    在Rt△AOE中,
    4x2+y2= ②,
    ∴①+ ②得:
    5x2+5y2= ,
    ∴x2+y2= ,
    在Rt△AOB中,
    ∴AB2=4x2+4y2=4(x2+y 2)=4× ,
    即AB= .
    故答案为: .
    【分析】连接DE,根据三角形中位线性质得DE∥AB,DE= AB,从而得△DOE∽△AOB,根据相似三角形的性质可得 = = = ;设OD=x,OE=y,从而可知OA=2x,OB=2y,根据勾股定理可得x2+4y2=4,4x2+y2= ,两式相加可得x2+y2= ,在Rt△AOB中,由股股定理可得AB= .
    3(2018·广东广州·3分)如图9,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E,连接AC,BE,DO,DO与AC交于点F,则下列结论:
    ①四边形ACBE是菱形;②∠ACD=∠BAE
    ③AF:BE=2:3 ④
    其中正确的结论有________。(填写所有正确结论的序号)
    【答案】①②④
    【考点】三角形的面积,全等三角形的判定与性质,线段垂直平分线的性质,平行四边形的性质,相似三角形的判定与性质
    【解析】【解答】解:①∵CE是平行四边形ABCD的边AB的垂直平分线,∴AO=BO,∠AOE=∠BOC=90°,BC∥AE,AE=BE,CA=CB,
    ∴∠OAE=∠OBC,
    ∴△AOE≌△BOC(ASA),
    ∴AE=BC,
    ∴AE=BE=CA=CB,
    ∴四边形ACBE是菱形,
    故①正确.
    ②由①四边形ACBE是菱形,
    ∴AB平分∠CAE,
    ∴∠CAO=∠BAE,
    又∵四边形ABCD是平行四边形,
    ∴BA∥CD,
    ∴∠CAO=∠ACD,
    ∴∠ACD=∠BAE.
    故②正确.
    ③∵CE垂直平分线AB,
    ∴O为AB中点,
    又∵四边形ABCD是平行四边形,
    ∴BA∥CD,AO= AB= CD,
    ∴△AFO∽△CFD,
    ∴ = ,
    ∴AF:AC=1:3,
    ∵AC=BE,
    ∴AF:BE=1:3,
    故③错误.
    ④∵ ·CD·OC,
    由③知AF:AC=1:3,
    ∴ ,
    ∵ = × CD·OC= ,
    ∴ = + = = ,

    故④正确.
    故答案为:①②④.
    【分析】①根据平行四边形和垂直平分线的性质得AO=BO,∠AOE=∠BOC=90°,BC∥AE,AE=BE,CA=CB,根据ASA得△AOE≌△BOC,由全等三角形性质得AE=CB,根据四边相等的四边形是菱形得出①正确.
    ②由菱形性质得∠CAO=∠BAE,根据平行四边形的性质得BA∥CD,再由平行线的性质得∠CAO=∠ACD,等量代换得∠ACD=∠BAE;故②正确.
    ③根据平行四边形和垂直平分线的性质得BA∥CD,AO= AB= CD,从而得△AFO∽△CFD,由相似三角形性质得 = ,从而得出AF:AC=1:3,即AF:BE=1:3,故③错误.
    ④由三角形面积公式得 ·CD·OC,从③知AF:AC=1:3,所以= + = = ,从而得出 故④正确.
    4(2018·广东深圳·3分)在Rt△ABC中∠C=90°,AD平分∠CAB,BE平分∠CBA,AD、BE相交于点F,且AF=4,EF= ,则AC=________.
    【答案】
    【考点】勾股定理,相似三角形的判定与性质
    【解析】【解答】解:作EG⊥AF,连接CF,
    ∵∠C=90°,
    ∴∠CAB+∠CBA=90°,
    又∵AD平分∠CAB,BE平分∠CBA,
    ∴∠FAB+∠FBA=45°,∴∠AFE=45°,
    在Rt△EGF中,
    ∵EF= ,∠AFE=45°,
    ∴EG=FG=1,
    又∵AF=4,
    ∴AG=3,
    ∴AE= ,
    ∵AD平分∠CAB,BE平分∠CBA,
    ∴CF平分∠ACB,
    ∴∠ACF=45°,
    ∵∠AFE=∠ACF=45°,∠FAE=∠CAF,
    ∴△AEF∽△AFC,
    ∴ ,
    即 ,
    ∴AC= .
    故答案为: .
    【分析】作EG⊥AF,连接CF,根据三角形内角和和角平分线定义得∠FAB+∠FBA=45°,再由三角形外角性质得∠AFE=45°,在Rt△EGF中,根据勾股定理得EG=FG=1,结合已知条件得AG=3,在Rt△AEG中,根据勾股定理得AE= ;由已知得F是三角形角平分线的交点,所以CF平分∠ACB,∠ACF=45°,根据相似三角形的判定和性质得 ,从而求出AC的长.
    5(2018·四川宜宾·3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是 ①②③ (写出所有正确结论的序号)
    ①当E为线段AB中点时,AF∥CE;
    ②当E为线段AB中点时,AF=;
    ③当A、F、C三点共线时,AE=;
    ④当A、F、C三点共线时,△CEF≌△AEF.
    【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.
    【分析】分两种情形分别求解即可解决问题;
    【解答】解:如图1中,当AE=EB时,
    ∵AE=EB=EF,
    ∴∠EAF=∠EFA,
    ∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,
    ∴∠BEC=∠EAF,
    ∴AF∥EC,故①正确,
    作EM⊥AF,则AM=FM,
    在Rt△ECB中,EC==,
    ∵∠AME=∠B=90°,∠EAM=∠CEB,
    ∴△CEB∽△EAM,
    ∴=,
    ∴=,
    ∴AM=,
    ∴AF=2AM=,故②正确,
    如图2中,当A、F、C共线时,设AE=x.
    则EB=EF=3﹣x,AF=﹣2,
    在Rt△AEF中,∵AE2=AF2+EF2,
    ∴x2=(﹣2)2+(3﹣x)2,
    ∴x=,
    ∴AE=,故③正确,
    如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,
    故答案为①②③.
    【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.
    6(2018·山东泰安·3分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”
    用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为 步.
    【分析】证明△CDK∽△DAH,利用相似三角形的性质得=,然后利用比例性质可求出CK的长.
    【解答】解:DH=100,DK=100,AH=15,
    ∵AH∥DK,
    ∴∠CDK=∠A,
    而∠CKD=∠AHD,
    ∴△CDK∽△DAH,
    ∴=,即=,
    ∴CK=.
    答:KC的长为步.
    故答案为.
    【点评】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.
    7. (2018•山东滨州•5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为 .
    【分析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.
    【解答】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,
    ∵四边形ABCD是矩形,
    ∴∠D=∠BAD=∠B=90°,AD=BC=4,
    ∴NF=x,AN=4﹣x,
    ∵AB=2,
    ∴AM=BM=1,
    ∵AE=,AB=2,
    ∴BE=1,
    ∴ME==,
    ∵∠EAF=45°,
    ∴∠MAE+∠NAF=45°,
    ∵∠MAE+∠AEM=45°,
    ∴∠MEA=∠NAF,
    ∴△AME∽△FNA,
    ∴,
    ∴,
    解得:x=,
    ∴AF==.
    故答案为:.
    【点评】本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,
    8 (2018•山东菏泽•3分)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为3:4,∠OCD=90°,∠AOB=60°,若点B的坐标是(6,0),则点C的坐标是 (2,2) .
    【考点】SC:位似变换;D5:坐标与图形性质.
    【分析】根据题意得出D点坐标,再解直角三角形进而得出答案.
    【解答】解:分别过A作AE⊥OB,CF⊥OB,
    ∵∠OCD=90°,∠AOB=60°,
    ∴∠ABO=∠CDO=30°,∠OCF=30°,
    ∵△OAB与△OCD是以点O为位似中心的位似图形,相似比为3:4,点B的坐标是(6,0),
    ∴D(8,0),则DO=8,
    故OC=4,
    则FO=2,CF=CO•cs30°=4×=2,
    故点C的坐标是:(2,2).
    故答案为:(2,2).
    【点评】此题主要考查了位似变换,运用位似图形的性质正确解直角三角形是解题关键.
    9 (2018•四川成都•3分)已知 ,且 ,则 的值为________.
    【答案】12
    【考点】解一元一次方程,比例的性质
    【解析】【解答】解:设 则a=6k,b=5k,c=4k

    ∴6k+5k-8k=6,解之:k=2
    ∴a=6×2=12
    故答案为:12
    【分析】设 ,分别用含k的式子表示出a、b、c的值,再根据 ,建立关于k的方程,求出k的值,就可得出a的值。
    10(2018•四川凉州•3分)已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′= 1: .
    【分析】根据相似三角形的面积比等于相似比的平方求解即可.
    【解答】解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.
    【点评】本题的关键是理解相似三角形的面积比等于相似比的平方.


    三.解答题
    (要求同上一)
    1. .(2018•四川凉州•7分)如图,△ABC在方格纸中
    (1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;
    (2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;
    (3)计算△A′B′C'的面积S.
    【分析】(1)直接利用A,C点坐标得出原点位置进而得出答案;
    (2)利用位似图形的性质即可得出△A'B'C';
    (3)直接利用(2)中图形求出三角形面积即可.
    【解答】解:(1)如图所示,即为所求的直角坐标系;B(2,1);
    (2)如图:△A'B'C'即为所求;
    (3)S△A'B'C'=×4×8=16.
    【点评】此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.

    2. (2018•山东枣庄•8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.
    (1)求线段AD的长度;
    (2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.
    【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.
    (2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.
    【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;
    连接CD,∵BC为直径,
    ∴∠ADC=∠BDC=90°;
    ∵∠A=∠A,∠ADC=∠ACB,
    ∴Rt△ADC∽Rt△ACB;
    ∴,∴;
    (2)当点E是AC的中点时,ED与⊙O相切;
    证明:连接OD,
    ∵DE是Rt△ADC的中线;
    ∴ED=EC,
    ∴∠EDC=∠ECD;
    ∵OC=OD,
    ∴∠ODC=∠OCD;
    ∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;
    ∴ED⊥OD,
    ∴ED与⊙O相切.
    【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.
    3 (2018•山东枣庄•10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
    (1)求证:四边形EFDG是菱形;
    (2)探究线段EG、GF、AF之间的数量关系,并说明理由;
    (3)若AG=6,EG=2,求BE的长.
    【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;
    (2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;
    (3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.
    【解答】解:(1)证明:∵GE∥DF,
    ∴∠EGF=∠DFG.
    ∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,
    ∴∠DGF=∠DFG.
    ∴GD=DF.
    ∴DG=GE=DF=EF.
    ∴四边形EFDG为菱形.
    (2)EG2=GF•AF.
    理由:如图1所示:连接DE,交AF于点O.
    ∵四边形EFDG为菱形,
    ∴GF⊥DE,OG=OF=GF.
    ∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
    ∴△DOF∽△ADF.
    ∴,即DF2=FO•AF.
    ∵FO=GF,DF=EG,
    ∴EG2=GF•AF.
    (3)如图2所示:过点G作GH⊥DC,垂足为H.
    ∵EG2=GF•AF,AG=6,EG=2,
    ∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.
    解得:FG=4,FG=﹣10(舍去).
    ∵DF=GE=2,AF=10,
    ∴AD==4.
    ∵GH⊥DC,AD⊥DC,
    ∴GH∥AD.
    ∴△FGH∽△FAD.
    ∴,即=.
    ∴GH=.
    ∴BE=AD﹣GH=4﹣=.
    【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.
    4. (2018•四川成都•8分)如图,在 中, , 平分 交 于点 , 为 上一点,经过点 , 的 分别交 , 于点 , ,连接 交 于点 .
    (1)求证: 是 的切线;
    (2)设 , ,试用含 的代数式表示线段 的长;
    (3)若 , ,求 的长.
    【答案】(1)如图,链接CD
    ∵AD为∠BAC的角平分线,
    ∴∠BAD=∠CAD.
    ∵OA=OD,
    ∴∠ODA=∠OAD,
    ∴∠ODA=∠CAD.
    ∴OD∥AC.
    又∵∠C=90°,
    ∴∠ODC=90°,
    ∴OD⊥BC,
    ∴BC是⊙O的切线.
    (2)连接DF,
    由(1)可知,BC为切线,
    ∴∠FDC=∠DAF.
    ∴∠CDA=∠CFD.
    ∴∠AFD=∠ADB.
    又∵∠BAD=∠DAF,
    ∴∆ABD∽∆ADF,
    ∴ ,
    ∴AD2=AB·AF.
    ∴AD2=xy,
    ∴AD=
    (3)连接EF
    在Rt∆BOD中,sinB= ,
    设圆的半径为r,∴ ,
    ∴r=5.
    ∴AE=10,AB=18.
    ∵AE是直径,∠AFE=90°,而∠C=90°,
    ∴EF∥BC,
    ∴∠AEF=∠B,
    ∴sin∠AEF= .
    ∴AF=AE·sin∠AEF=10× = .
    ∵AF∥OD,
    ∴ ,
    ∴DG= AD.
    ∴AD= ,
    ∴DG=
    【考点】切线的判定与性质,相似三角形的判定与性质,解直角三角形
    【解析】【分析】(1)连接OD,根据角平分线的性质及等腰三角形的性质,去证明∠ODC=90°即可。(2)连接DF,DE,根据圆的切线,可证得∠FDC=∠DAF,再证∠CDA=∠CFD=∠AED,根据平角的定义可证得∠AFD=∠ADB,从而可证得△ABD∽△ABF,得出对应边成比例,可得出答案。(3)连接EF,在Rt△BOD中,利用三角函数的定义求出圆的半径、AE、AB的长,再证明EF∥BC,得出∠B=∠AEF,利用锐角三角函数的定义求出AF的长,再根据AF∥OD,得出线段成比例,求出DG的长,然后可求出AD的长,从而可求得DG的长。
    5(2018•江西•6分)如图,在中,=8,=4,=6,,是的平分线,交于点,求的长.
    【解析】 ∵BD是∠ABC的平分线, ∴∠ABD=∠CBD
    ∵CD∥AB ∴∠ABD=∠D
    ∴∠CBD=∠D ∴CD=BC=4
    又∵CD∥AB ∴△ABE∽△CDE
    ∴= ∵CE+AE=AC=6 ∴AE=4
    6.(2018·湖北省宜昌·11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.
    (1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;
    (2)如图2,①求证:BP=BF;
    ②当AD=25,且AE<DE时,求cs∠PCB的值;
    ③当BP=9时,求BE•EF的值.
    【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;
    (2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;
    ②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;
    ③判断出△GEF∽△EAB,即可得出结论.
    【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,
    ∵E是AD中点,∴AE=DE,
    在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);
    (2)①在矩形ABCD,∠ABC=90°,
    ∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,
    ∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;
    ②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,
    ∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,
    ∵∠A=∠D=90°,∴△ABE∽△DEC,∴,
    设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,
    ∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,
    由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,
    ∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,
    ∴BP=,在Rt△PBC中,PC=,cs∠PCB==;
    ③如图,连接FG,
    ∵∠GEF=∠BAE=90°,
    ∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,
    ∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.
    【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.
    7(2018·湖北省武汉·10分)在△ABC中,∠ABC=90°.
    (1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;
    (2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;
    (3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.
    【分析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;
    (2)先判断出△ABP∽△PQF,得出=,再判断出△ABP∽△CQF,得出CQ=2a,进而建立方程用b表示出a,即可得出结论;
    (3)先判断出=,再同(2)的方法,即可得出结论.
    【解答】解:(1)∵AM⊥MN,CN⊥MN,
    ∴∠AMB=∠BNC=90°,
    ∴∠BAM+∠ABM=90°,
    ∵∠ABC=90°,
    ∴∠ABM+∠CBN=90°,
    ∴∠BAM=∠CBN,
    ∵∠AMB=∠NBC,
    ∴△ABM∽△BCN;
    (2)如图2,
    过点P作PF⊥AP交AC于F,
    在Rt△AFP中,tan∠PAC===,
    同(1)的方法得,△ABP∽△PQF,
    ∴=,
    设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),
    ∵∠BAP=∠C,∠B=∠CQF=90°,
    ∴△ABP∽△CQF,
    ∴,∴CQ==2a,
    ∵BC=BP+PQ+CQ=b+2a+2a=4a+b
    ∵∠BAP=∠C,∠B=∠B=90°,
    ∴△ABP∽△CBA,
    ∴=,
    ∴BC===,
    ∴4a+b=,a=b,
    ∴BC=4×b+b=b,AB=a=b,
    在Rt△ABC中,tanC==;
    (3)
    在Rt△ABC中,sin∠BAC==,
    过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,
    ∵∠DEB=90°,
    ∴CH∥AG∥DE,
    ∴=
    同(1)的方法得,△ABG∽△BCH
    ∴,
    设BG=4m,CH=3m,AG=4n,BH=3n,
    ∵AB=AE,AG⊥BE,
    ∴EG=BG=4m,
    ∴GH=BG+BH=4m+3n,
    ∴,
    ∴n=2m,
    ∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,
    在Rt△CEH中,tan∠BEC==.
    【点评】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.
    8.(2018·湖南省常德·10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.
    (1)如图1,当M在线段BO上时,求证:MO=NO;
    (2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;
    (3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.
    【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;
    (2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;
    (3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),
    同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.
    【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,
    ∴OD=OA,∠AOM=∠DON=90°,
    ∴∠OND+∠ODN=90°,
    ∵∠ANH=∠OND,
    ∴∠ANH+∠ODN=90°,
    ∵DH⊥AE,
    ∴∠DHM=90°,
    ∴∠ANH+∠OAM=90°,
    ∴∠ODN=∠OAM,
    ∴△DON≌△AOM,
    ∴OM=ON;
    (2)连接MN,
    ∵EN∥BD,
    ∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,
    ∴EN=CN,同(1)的方法得,OM=ON,
    ∵OD=OD,
    ∴DM=CN=EN,
    ∵EN∥DM,
    ∴四边形DENM是平行四边形,
    ∵DN⊥AE,
    ∴▱DENM是菱形,
    ∴DE=EN,
    ∴∠EDN=∠END,
    ∵EN∥BD,
    ∴∠END=∠BDN,
    ∴∠EDN=∠BDN,
    ∵∠BDC=45°,
    ∴∠BDN=22.5°,
    ∵∠AHD=90°,
    ∴∠AMB=∠DME=90°﹣∠BDN=67.5°,
    ∵∠ABM=45°,
    ∴∠BAM=67.5°=∠AMB,
    ∴BM=AB;
    (3)设CE=a(a>0)
    ∵EN⊥CD,
    ∴∠CEN=90°,
    ∵∠ACD=45°,
    ∴∠CNE=45°=∠ACD,
    ∴EN=CE=a,
    ∴CN=a,
    设DE=b(b>0),
    ∴AD=CD=DE+CE=a+b,
    根据勾股定理得,AC=AD=(a+b),
    同(1)的方法得,∠OAM=∠ODN,
    ∵∠OAD=∠ODC=45°,
    ∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,
    ∴△DEN∽△ADE,
    ∴,
    ∴,
    ∴a=b(已舍去不符合题意的)
    ∴CN=a=b,AC=(a+b)=b,
    ∴AN=AC﹣CN=b,
    ∴AN2=2b2,AC•CN=b•b=2b2
    ∴AN2=AC•CN.
    【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.
    9.(2018·山东泰安·12分)如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF∥AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.
    (1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;
    (2)找出图中与△AGB相似的三角形,并证明;
    (3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF•MH.
    【分析】(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;
    (2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;
    (3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论,
    【解答】解:(1)∠DEF=∠AEF,
    理由:∵EF∥AB,
    ∴∠DEF=∠EBA,∠AEF=∠EAB,
    ∵∠EAB=∠EBA,
    ∴∠DEF=∠AEF;
    (2)△EOA∽△AGB,
    理由:∵四边形ABCD是菱形,
    ∴AB=AD,AC⊥BD,
    ∴∠GAB=∠ABE+∠ADB=2∠ABE,
    ∵∠AEO=∠ABE+∠BAE=2∠ABE,
    ∵∠GAB=∠AEO,∠GAB=∠AOE=90°,
    ∴△EOA∽△AGB;
    (3)如图,连接DM,∵四边形ABCD是菱形,
    由对称性可知,BM=DM,∠ADM=∠ABM,
    ∵AB∥CH,
    ∴∠ABM=∠H,
    ∴∠ADM=∠H,
    ∵∠DMH=∠FMD,
    ∴△MFD∽△MDH,
    ∴,
    ∴DM2=MF•MH,
    ∴BM2=MF•MH.
    【点评】此题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解本题的关键.
    10.(2018·山东潍坊·12分)如图1,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.
    (1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.
    ①求四边形BHMM′的面积;
    ②直线EF上有一动点N,求△DNM周长的最小值.
    (2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.
    【分析】(1)①根据相似三角形的判定和性质以及平移的性质进行解答即可;
    ②连接CM交直线EF于点N,连接DN,利用勾股定理解答即可;
    (2)分点P在线段CE上和点P在线段ED上两种情况进行解答.
    【解答】解:(1)①在▱ABCD中,AB=6,直线EF垂直平分CD,
    ∴DE=FH=3,
    又BF:FA=1:5,
    ∴AH=2,
    ∵Rt△AHD∽Rt△MHF,
    ∴,
    即,
    ∴HM=1.5,
    根据平移的性质,MM'=CD=6,连接BM,如图1,
    四边形BHMM′的面积=;
    ②连接CM交直线EF于点N,连接DN,如图2,
    ∵直线EF垂直平分CD,
    ∴CN=DN,
    ∵MH=1.5,
    ∴DM=2.5,
    在Rt△CDM中,MC2=DC2+DM2,
    ∴MC2=62+(2.5)2,
    即MC=6.5,
    ∵MN+DN=MN+CN=MC,
    ∴△DNM周长的最小值为9.
    (2)∵BF∥CE,
    ∴,
    ∴QF=2,
    ∴PK=PK'=6,
    过点K'作E'F'∥EF,分别交CD于点E',交QK于点F',如图3,
    当点P在线段CE上时,
    在Rt△PK'E'中,
    PE'2=PK'2﹣E'K'2,
    ∴,
    ∵Rt△PE'K'∽Rt△K'F'Q,
    ∴,
    即,
    解得:,
    ∴PE=PE'﹣EE'=,
    ∴,
    同理可得,当点P在线段DE上时,,如图4,
    综上所述,CP的长为或.
    【点评】此题考查四边形的综合题,关键是根据相似三角形的性质和平移的性质解答,注意(2)分两种情况分析.
    11. (2018年江苏省南京市)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.
    (1)求证:△AFG∽△DFC;
    (2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.
    【分析】(1)欲证明△AFG∽△DFC,只要证明∠FAG=∠FDC,∠AGF=∠FCD;
    (2)首先证明CG是直径,求出CG即可解决问题;
    【解答】(1)证明:在正方形ABCD中,∠ADC=90°,
    ∴∠CDF+∠ADF=90°,
    ∵AF⊥DE,
    ∴∠AFD=90°,
    ∴∠DAF+∠ADF=90°,
    ∴∠DAF=∠CDF,
    ∵四边形GFCD是⊙O的内接四边形,
    ∴∠FCD+∠DGF=180°,
    ∵∠FGA+∠DGF=180°,
    ∴∠FGA=∠FCD,
    ∴△AFG∽△DFC.
    (2)解:如图,连接CG.
    ∵∠EAD=∠AFD=90°,∠EDA=∠ADF,
    ∴△EDA∽△ADF,
    ∴=,即=,
    ∵△AFG∽△DFC,
    ∴=,
    ∴=,
    在正方形ABCD中,DA=DC,
    ∴AG=EA=1,DG=DA﹣AG=4﹣1=3,
    ∴CG==5,
    ∵∠CDG=90°,
    ∴CG是⊙O的直径,
    ∴⊙O的半径为.
    【点评】本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.

    12. (2018·新疆生产建设兵团·12分)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.
    (1)求证:PB是⊙O的切线;
    (2)若OC=3,AC=4,求sinE的值.
    【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.
    (2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP或EO的长即可解决问题
    【解答】(1)证明:连接OB∵PO⊥AB,
    ∴AC=BC,
    ∴PA=PB
    在△PAO和△PBO中
    ∴△PAO和≌△PBO
    ∴∠OBP=∠OAP=90°
    ∴PB是⊙O的切线.
    (2)连接BD,则BD∥PO,且BD=2OC=6
    在Rt△ACO中,OC=3,AC=4
    ∴AO=5
    在Rt△ACO与Rt△PAO中,
    ∠APO=∠APO,
    ∠PAO=∠ACO=90°
    ∴△ACO∼△PAO
    =
    ∴PO=,PA=
    ∴PB=PA=
    在△EPO与△EBD中,
    BD∥PO
    ∴△EPO∽△EBD
    ∴=,
    解得EB=,
    PE=,
    ∴sinE==
    【点评】本题考查了切线的判定以及相似三角形的判定和性质.能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键.
    13 (2018·四川宜宾·10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.
    (1)求证:直线EC为圆O的切线;
    (2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.
    【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.
    【分析】(1)说明OC是△BDA的中位线,利用中位线的性质,得到∠OCE=∠CED=90°,从而得到CE是圆O的切线.
    (2)利用直径上的圆周角,得到△PEF是直角三角形,利用角相等,可得到△PEF∽△PEA、△PCF∽△PAC,从而得到PC=PE=5.然后求出sin∠PEF的值.
    【解答】解:(1)证明:∵CE⊥AD于点E
    ∴∠DEC=90°,
    ∵BC=CD,
    ∴C是BD的中点,又∵O是AB的中点,
    ∴OC是△BDA的中位线,
    ∴OC∥AD
    ∴∠OCE=∠CED=90°
    ∴OC⊥CE,又∵点C在圆上,
    ∴CE是圆O的切线.
    (2)连接AC
    ∵AB是直径,点F在圆上
    ∴∠AFB=∠PFE=90°=∠CEA
    ∵∠EPF=∠EPA
    ∴△PEF∽△PEA
    ∴PE2=PF×PA
    ∵∠FBC=∠PCF=∠CAF
    又∵∠CPF=∠CPA
    ∴△PCF∽△PAC
    ∴PC2=PF×PA
    ∴PE=PC
    在直角△PEF中,sin∠PEF==.
    【点评】本题考查了切线的判定、三角形的中位线定理、相似三角形的性质和判定等知识点.利用三角形相似,说明PE=PC是解决本题的难点和关键.
    14(2018·四川自贡·10分)如图,在△ABC中,∠ACB=90°.
    (1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)
    (2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)
    【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆即可解决问题;
    (2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题;
    【解答】解:(1)⊙O如图所示;
    (2)作OH⊥BC于H.
    ∵AC是⊙O的切线,
    ∴OE⊥AC,
    ∴∠C=∠CEO=∠OHC=90°,
    ∴四边形ECHO是矩形,
    ∴OE=CH=,BH=BC﹣CH=,
    在Rt△OBH中,OH==2,
    ∴EC=OH=2,BE==2,
    ∵∠EBC=∠EBD,∠BED=∠C=90°,
    ∴△BCE∽△BED,
    ∴=,
    ∴=,
    ∴DE=.
    【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    15(2018•湖北黄石•9分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).
    (1)如图1,若EF∥BC,求证:
    (2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;
    (3)如图3,若EF上一点G恰为△ABC的重心,,求的值.
    【分析】(1)由EF∥BC知△AEF∽△ABC,据此得=,根据=()2即可得证;
    (2)分别过点F、C作AB的垂线,垂足分别为N、H,据此知△AFN∽△ACH,得=,根据=即可得证;
    (3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,由重心性质知S△ABM=S△ACM、=,设=a,利用(2)中结论知==、==a,从而得==+a,结合==a可关于a的方程,解之求得a的值即可得出答案.
    【解答】解:(1)∵EF∥BC,
    ∴△AEF∽△ABC,
    ∴=,
    ∴=()2=•=;
    (2)若EF不与BC平行,(1)中的结论仍然成立,
    分别过点F、C作AB的垂线,垂足分别为N、H,
    ∵FN⊥AB、CH⊥AB,
    ∴FN∥CH,
    ∴△AFN∽△ACH,
    ∴=,
    ∴==;
    (3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,
    则MN分别是BC、AC的中点,
    ∴MN∥AB,且MN=AB,
    ∴==,且S△ABM=S△ACM,
    ∴=,
    设=a,
    由(2)知:==×=,==a,
    则==+=+a,
    而==a,
    ∴+a=a,
    解得:a=,
    ∴=×=.
    【点评】本题主要考查相似形的综合问题,解题的关键是熟练掌握相似三角形的判定与性质和三角形重心的定义及其性质等知识点.
    16. (2018·浙江宁波·12分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
    (1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;
    (2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.
    (3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.
    【考点】相似三角形的判定与性质
    【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC三种情况分别代入计算可得;
    (2)先证△ABC∽△DCA得CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;
    (3)作AH⊥BD,由AB=AD知BH=BD,再证△ABH∽△DBC得AB•BC=BH•DB,即AB•BC=BD2,结合AB•BC=AC2知BD2=AC2,据此可得答案.
    【解答】解:(1)∵△ABC是比例三角形,且AB=2、AC=3,
    ①当AB2=BC•AC时,得:4=3AC,解得:AC=;
    ②当BC2=AB•AC时,得:9=2AC,解得:AC=;
    ③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);
    所以当AC=或或时,△ABC是比例三角形;
    (2)∵AD∥BC,
    ∴∠ACB=∠CAD,
    又∵∠BAC=∠ADC,
    ∴△ABC∽△DCA,
    ∴=,即CA2=BC•AD,
    ∵AD∥BC,
    ∴∠ADB=∠CBD,
    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    ∴∠ADB=∠ABD,
    ∴AB=AD,
    ∴CA2=BC•AB,
    ∴△ABC是比例三角形;
    (3)如图,过点A作AH⊥BD于点H,
    ∵AB=AD,
    ∴BH=BD,
    ∵AD∥BC,∠ADC=90°,
    ∴∠BCD=90°,
    ∴∠BHA=∠BCD=90°,
    又∵∠ABH=∠DBC,
    ∴△ABH∽△DBC,
    ∴=,即AB•BC=BH•DB,
    ∴AB•BC=BD2,
    又∵AB•BC=AC2,
    ∴BD2=AC2,
    ∴=.
    【点评】本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.
    17.(2018·广东广州·12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
    (1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)
    (2)在(1)的条件下,①证明:AE⊥DE;
    ②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。
    【答案】(1)
    (2)①证明:在AD上取一点F使DF=DC,连接EF,
    ∵DE平分∠ADC,
    ∴∠FDE=∠CDE,
    在△FED和△CDE中,
    DF=DC,∠FDE=∠CDE,DE=DE
    ∴△FED≌△CDE(SAS),
    ∴∠DFE=∠DCE=90°,∠AFE=180°-∠DFE=90°
    ∴∠DEF=∠DEC,
    ∵AD=AB+CD,DF=DC,
    ∴AF=AB,
    在Rt△AFE≌Rt△ABE(HL)
    ∴∠AEB=∠AEF,
    ∴∠AED=∠AEF+∠DEF= ∠CEF+ ∠BEF= (∠CEF+∠BEF)=90°。
    ∴AE⊥DE
    ②解:过点D作DP⊥AB于点P,
    ∵由①可知,B,F关于AE对称,BM=FM,
    ∴BM+MN=FM+MN,
    当F,M,N三点共线且FN⊥AB时,有最小值,
    ∵DP⊥AB,AD=AB+CD=6,
    ∴∠DPB=∠ABC=∠C=90°,
    ∴四边形DPBC是矩形,
    ∴BP=DC=2,AP=AB-BP=2,
    在Rt△APD中,DP= = ,
    ∵FN⊥AB,由①可知AF=AB=4,
    ∴FN∥DP,
    ∴△AFN∽△ADP
    ∴ ,
    即 ,
    解得FN= ,
    ∴BM+MN的最小值为
    【考点】全等三角形的判定与性质,矩形的判定与性质,作图—基本作图,轴对称的应用-最短距离问题,相似三角形的判定与性质
    【解析】【分析】(1)根据角平分的做法即可画出图.(2)①在AD上取一点F使DF=DC,连接EF;角平分线定义得∠FDE=∠CDE;根据全等三角形判定SAS得△FED≌△CDE,再由全等三角形性质和补角定义得∠DFE=∠DCE=∠AFE=90°,
    ∠DEF=∠DEC;再由直角三角形全等的判定HL得Rt△AFE≌Rt△ABE,由全等三角形性质得∠AEB=∠AEF,再由补角定义可得AE⊥DE.
    ②过点D作DP⊥AB于点P;由①可知,B,F关于AE对称,根据对称性质知BM=FM,
    当F,M,N三点共线且FN⊥AB时,有最小值,即BM+MN=FM+MN=FN;在Rt△APD中,根据勾股定理得DP= = ;由相似三角形判定得△AFN∽△ADP,再由相似三角形性质得 ,从而求得FN,即BM+MN的最小值.
    18(2018·广东深圳·8分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于 AD长为半径做弧,交 于点B,AB∥CD.
    (1)求证:四边形ACDB为△CFE的亲密菱形;
    (2)求四边形ACDB的面积.
    【答案】(1)证明:由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,
    ∴∠ACB=∠DCB,
    又∵AB∥CD,
    ∴∠ABC=∠DCB,
    ∴∠ACB=∠ABC,
    ∴AC=AB,
    又∵AC=CD,AB=DB,
    ∴AC=CD=DB=BA,
    四边形ACDB是菱形,
    又∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,
    ∴四边形ACDB为△FEC的亲密菱形.
    (2)解:设菱形ACDB的边长为x,∵CF=6,CE=12,
    ∴FA=6-x,
    又∵AB∥CE,
    ∴△FAB∽△FCE,
    ∴ ,
    即 ,
    解得:x=4,
    过点A作AH⊥CD于点H,
    在Rt△ACH中,∠ACH=45°,
    ∴sin∠ACH= ,
    ∴AH=4× =2 ,
    ∴四边形ACDB的面积为: .
    【考点】菱形的判定与性质,相似三角形的判定与性质
    【解析】【分析】(1)依题可得:AC=CD,AB=DB,BC是∠FCE的角平分线,根据角平分线的定义和平行线的性质得∠ACB=∠ABC,根据等角对等边得AC=AB,从而得AC=CD=DB=BA,根据四边相等得四边形是菱形即可得四边形ACDB是菱形;再根据题中的新定义即可得证.
    (2)设菱形ACDB的边长为x,根据已知可得CF=6,CE=12,FA=6-x,根据相似三角形的判定和性质可得 ,解得:x=4,过点A作AH⊥CD于点H,在Rt△ACH中,根据锐角三角形函数正弦的定义即可求得AH ,再由四边形的面积公式即可得答案.
    19(2018·广东深圳·9分)如图:在 中,BC=2,AB=AC,点D为AC上的动点,且 .
    (1)求AB的长度;
    (2)求AD·AE的值;
    (3)过A点作AH⊥BD,求证:BH=CD+DH.
    【答案】(1)解:作AM⊥BC,
    ∵AB=AC,BC=2,AM⊥BC,
    ∴BM=CM= BC=1,
    在Rt△AMB中,
    ∵csB= ,BM=1,
    ∴AB=BM÷csB=1÷ = .
    (2)解:连接CD,∵AB=AC,
    ∴∠ACB=∠ABC,
    ∵四边形ABCD内接于圆O,
    ∴∠ADC+∠ABC=180°,
    又∵∠ACE+∠ACB=180°,
    ∴∠ADC=∠ACE,
    ∵∠CAE=∠CAD,
    ∴△EAC∽△CAD,
    ∴ ,
    ∴AD·AE=AC2=AB2=( )2=10.
    (3)证明:在BD上取一点N,使得BN=CD,
    在△ABN和△ACD中

    ∴△ABN≌△ACD(SAS),
    ∴AN=AD,
    ∵AH⊥BD,AN=AD,
    ∴NH=DH,
    又∵BN=CD,NH=DH,
    ∴BH=BN+NH=CD+DH.
    【考点】全等三角形的判定与性质,等腰三角形的性质,圆内接四边形的性质,相似三角形的判定与性质,锐角三角函数的定义
    【解析】【分析】(1)作AM⊥BC,由等腰三角形三线合一的性质得BM=CM= BC=1,在Rt△AMB中,根据余弦定义得csB= ,由此求出AB.
    (2)连接CD,根据等腰三角形性质等边对等角得∠ACB=∠ABC,再由圆内接四边形性质和等角的补角相等得∠ADC=∠ACE;由相似三角形的判定得△EAC∽△CAD,根据相似三角形的性质得
    ; 从而得AD·AE=AC2=AB2.
    (3)在BD上取一点N,使得BN=CD,根据SAS得△ABN≌△ACD,再由全等三角形的性质得AN=AD,根据等腰三角形三线合一的性质得NH=DH,从而得BH=BN+NH=CD+DH.
    20(2018·广东深圳·9分)已知顶点为 抛物线 经过点 ,点 .
    (1)求抛物线的解析式;
    (2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
    (3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1 , 若点N1落在x轴上,请直接写出Q点的坐标.
    【答案】(1)解:把点 代入 ,解得:a=1,
    ∴抛物线的解析式为: 或 .
    (2)解:设直线AB解析式为:y=kx+b,代入点A、B的坐标得:,
    解得: ,
    ∴直线AB的解析式为:y=-2x-1,
    ∴E(0,-1),F(0,- ),M(- ,0),
    ∴OE=1,FE= ,
    ∵∠OPM=∠MAF,
    ∴当OP∥AF时,△OPE∽△FAE,

    ∴OP= FA= ,
    设点P(t,-2t-1),
    ∴OP= ,
    化简得:(15t+2)(3t+2)=0,
    解得 , ,
    ∴S△OPE= ·OE· ,
    当t=- 时 ,S△OPE= ×1× = ,
    当t=- 时 ,S△OPE= ×1× = ,
    综上,△POE的面积为 或 .
    (3)Q(- , ).
    【考点】二次函数的应用,翻折变换(折叠问题),相似三角形的判定与性质
    【解析】【解答】(3)解:由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),设Q(m,-2m-1),N1(n,0),
    ∴N(m,-1),
    ∵△QEN沿QE翻折得到△QEN1
    ∴NN1中点坐标为( , ),EN=EN1 ,
    ∴NN1中点一定在直线AB上,
    即 =-2× -1,
    ∴n=- -m,
    ∴N1(- -m,0),
    ∵EN2=EN12 ,
    ∴m2=(- -m)2+1,
    解得:m=- ,
    ∴Q(- , ).
    【分析】(1)用待定系数法将点B点坐标代入二次函数解析式即可得出a值.
    (2)设直线AB解析式为:y=kx+b,代入点A、B的坐标得一个关于k和b的二元一次方程组,解之即可得直线AB解析式,根据题意得E(0,-1),F(0,- ),M(- ,0),根据相似三角形的判定和性质得OP= FA= ,设点P(t,-2t-1),根据两点间的距离公式即可求得t值,再由三角形面积公式△POE的面积.
    (3)由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),设Q(m,-2m-1),N1(n,0),从而得N(m,-1),根据翻折的性质知NN1中点坐标为( , )且在直线AB上,将此中点坐标代入直线AB解析式可得n=- -m,即N1(- -m,0),再根据翻折的性质和两点间的距离公式得m2=(- -m)2+1,解之即可得Q点坐标.
    21(2018·广东·9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.
    (1)证明:OD∥BC;
    (2)若tan∠ABC=2,证明:DA与⊙O相切;
    (3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.
    【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;
    (2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;
    (3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.
    【解答】解:(1)连接OC,
    在△OAD和△OCD中,
    ∵,
    ∴△OAD≌△OCD(SSS),
    ∴∠ADO=∠CDO,
    又AD=CD,
    ∴DE⊥AC,
    ∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∴∠ACB=90°,即BC⊥AC,
    ∴OD∥BC;
    (2)∵tan∠ABC==2,
    ∴设BC=a、则AC=2a,
    ∴AD=AB==,
    ∵OE∥BC,且AO=BO,
    ∴OE=BC=a,AE=CE=AC=a,
    在△AED中,DE==2a,
    在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,
    ∴AO2+AD2=OD2,
    ∴∠OAD=90°,
    则DA与⊙O相切;
    (3)连接AF,
    ∵AB是⊙O的直径,
    ∴∠AFD=∠BAD=90°,
    ∵∠ADF=∠BDA,
    ∴△AFD∽△BAD,
    ∴=,即DF•BD=AD2①,
    又∵∠AED=∠OAD=90°,∠ADE=∠ODA,
    ∴△AED∽△OAD,
    ∴=,即OD•DE=AD2②,
    由①②可得DF•BD=OD•DE,即=,
    又∵∠EDF=∠BDO,
    ∴△EDF∽△BDO,
    ∵BC=1,
    ∴AB=AD=、OD=、ED=2、BD=、OB=,
    ∴=,即=,
    解得:EF=.
    【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.
    22(2018•广西桂林•12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.
    (1)求抛物线y的函数表达式及点C的坐标;
    (2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;
    (3)在抛物线上是否存在点E,使∠ABE=∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.
    【答案】(1)y=-2x2-4x+6;(2)M(-1,);(3)E1(-2,6),E2(-4,-10) .
    【解析】分析:(1)根据抛物线过A、B两点,待定系数法求解可得;;
    (2)由(1)知抛物线对称轴为直线x=-1,设H为AC的中点,求出直线AC的垂直平分线的解析式即可得解;
    (3)①过点A作交y轴于点F,交CB的延长线于点D,证明ΔAOF∽ΔCOA,求得,分别求出直线AF、BC的解析式的交点,求出,
    根据∠ABE=∠ACB求出∠ABE=2,易求E点坐标.
    详解:(1)把A(-3,0)、B(1,0)代入y=ax2+bx+6得,
    ,解得
    ∴y=-2x2-4x+6,
    令x=0,则y=6,
    ∴C(0,6);
    (2)=-2(x+1)2+8,
    ∴抛物线的对称轴为直线x=-1.
    设H为线段AC的中点,故H(,3).
    设直线AC的解析式为:y=kx+m,则有
    ,解得,,
    ∴y=2x+6
    设过H点与AC垂直的直线解析式为:,

    ∴b=

    ∴当x=-1时,y=
    ∴M(-1,)
    (3)①过点A作交y轴于点F,交CB的延长线于点D
    ∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°
    ∴∠DAO=∠ACO
    ∵∠ACO=∠ACO
    ∴ΔAOF∽ΔCOA


    ∵OA=3,OC=6


    直线AF的解析式为:
    直线BC的解析式为:
    ∴,解得


    ∴∠ACB=
    ∵∠ABE=∠ACB
    ∴∠ABE=2
    过点A作轴,连接BM交抛物线于点E
    ∵AB=4,∠ABE=2
    ∴AM=8
    ∴M(-3,8)
    直线BM的解析式为:
    ∴,解得
    ∴y=6
    ∴E(-2,6)
    ②当点E在x轴下方时,过点E作,连接BE,设点E
    ∴∠ABE=2
    ∴m=-4或m=1(舍去)
    可得E(-4,-10)
    综上所述E1(-2,6),E2(-4,-10)
    点睛:本题主要考查二次函数与轴对称、相似三角形的性质,根据题意灵活运用所需知识点是解题的关键.A.
    B.
    C.
    D.
    相关试卷

    全国各地中考数学试卷分类汇编:图形的相似与位似: 这是一份全国各地中考数学试卷分类汇编:图形的相似与位似,共38页。试卷主要包含了即=0等内容,欢迎下载使用。

    2020年中考数学真题分项汇编专题18图形的相似与位似 (含解析): 这是一份2020年中考数学真题分项汇编专题18图形的相似与位似 (含解析),共60页。

    专题21 图形的相似- 2023年中考数学真题分类汇编(通用版含解析): 这是一份专题21 图形的相似- 2023年中考数学真题分类汇编(通用版含解析),文件包含专题21图形的相似共29题解析版docx、专题21图形的相似共29题原卷版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:0份资料
    • 充值学贝下载 90%的用户选择 本单免费
    • 扫码直接下载
    选择教习网的 4 个理由
    • 更专业

      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿

    • 更丰富

      涵盖课件/教案/试卷/素材等各种教学资源;500万+优选资源 ⽇更新5000+

    • 更便捷

      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤

    • 真低价

      超⾼性价⽐, 让优质资源普惠更多师⽣

    开票申请 联系客服
    本次下载需要:0学贝 0学贝 账户剩余:0学贝
    本次下载需要:0学贝 原价:0学贝 账户剩余:0学贝
    了解VIP特权
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送

        扫码支付后直接下载

        0元

        扫码支付后直接下载

        使用学贝下载资料比扫码直接下载优惠50%
        充值学贝下载,本次下载免费
        了解VIP特权
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付(支持花呗)

        到账0学贝
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付 (支持花呗)

          下载成功

          Ctrl + Shift + J 查看文件保存位置

          若下载不成功,可重新下载,或查看 资料下载帮助

          本资源来自成套资源

          更多精品资料

          正在打包资料,请稍候…

          预计需要约10秒钟,请勿关闭页面

          服务器繁忙,打包失败

          请联系右侧的在线客服解决

          单次下载文件已超2GB,请分批下载

          请单份下载或分批下载

          支付后60天内可免费重复下载

          我知道了
          正在提交订单

          欢迎来到教习网

          • 900万优选资源,让备课更轻松
          • 600万优选试题,支持自由组卷
          • 高质量可编辑,日均更新2000+
          • 百万教师选择,专业更值得信赖
          微信扫码注册
          qrcode
          二维码已过期
          刷新

          微信扫码,快速注册

          还可免费领教师专享福利「樊登读书VIP」

          手机号注册
          手机号码

          手机号格式错误

          手机验证码 获取验证码

          手机验证码已经成功发送,5分钟内有效

          设置密码

          6-20个字符,数字、字母或符号

          注册即视为同意教习网「注册协议」「隐私条款」
          QQ注册
          手机号注册
          微信注册

          注册成功

          下载确认

          下载需要:0 张下载券

          账户可用:0 张下载券

          立即下载

          如何免费获得下载券?

          加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

          返回
          顶部