搜索
    上传资料 赚现金
    山东省各地市2020年中考数学最后一题真题汇编卷 解析版
    立即下载
    加入资料篮
    山东省各地市2020年中考数学最后一题真题汇编卷  解析版01
    山东省各地市2020年中考数学最后一题真题汇编卷  解析版02
    山东省各地市2020年中考数学最后一题真题汇编卷  解析版03
    还剩41页未读, 继续阅读
    下载需要15学贝
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省各地市2020年中考数学最后一题真题汇编卷 解析版

    展开
    山东省各地市2020年中考数学最后一题真题汇编卷
    1.(2020•临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.
    (1)求证:AF=EF;
    (2)求MN+NG的最小值;
    (3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?

    2.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.
    (1)观察猜想.
    图1中,线段NM、NP的数量关系是   ,∠MNP的大小为   .
    (2)探究证明
    把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;
    (3)拓展延伸
    把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.

    3.(2020•烟台)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
    (1)求抛物线的表达式;
    (2)当线段DF的长度最大时,求D点的坐标;
    (3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.

    4.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
    (1)求抛物线的表达式;
    (2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
    (3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.

    5.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.
    (1)求抛物线的表达式;
    (2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
    (3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.

    6.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
    (1)求二次函数的表达式;
    (2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
    (3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
    ①当m=时,求点P的坐标;
    ②求m的最大值.

    7.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
    (1)求这条抛物线对应的函数表达式;
    (2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
    (3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.

    8.(2020•威海)发现规律
    (1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.

    (2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.
    应用结论
    (3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.

    9.(2020•青岛)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).
    解答下列问题:
    (1)当t为何值时,点M在线段CQ的垂直平分线上?
    (2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;
    (3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;
    (4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.

    10.(2020•济宁)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).
    (1)求证:△AEH≌△AGH;
    (2)当AB=12,BE=4时.
    ①求△DGH周长的最小值;
    ②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.

    11.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
    探究:
    (1)线段PA与PM的数量关系为   ,其理由为:   .
    (2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
    M的坐标

    (﹣2,0)
    (0,0)
    (2,0)
    (4,0)

    P的坐标

       
    (0,﹣1)
    (2,﹣2)
       

    猜想:
    (3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是   .
    验证:
    (4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
    应用:
    (5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.

    12.(2020•菏泽)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.
    (1)求抛物线的函数表达式;
    (2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;
    (3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.

    13.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.
    (1)求这条抛物线的函数解析式;
    (2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
    (3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.

    14.(2020•聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
    (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
    (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
    (3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.








    参考答案及试题分析
    1.(2020•临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.
    (1)求证:AF=EF;
    (2)求MN+NG的最小值;
    (3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?

    【分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;
    (2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG的最小值为AC的一半,即可求解;
    (3)延长EF,交DC于H,利用外角的性质证明∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,再由AF=CF=EF,得到∠AEF=∠EAF,∠FEC=∠FCE,从而推断出∠AFD=∠FAE+∠ABF=∠FEA+∠CEF,从而可求出∠ABF=∠CEF=30°,即可证明.
    【解答】解:(1)连接CF,
    ∵FG垂直平分CE,
    ∴CF=EF,
    ∵四边形ABCD为菱形,
    ∴A和C关于对角线BD对称,
    ∴CF=AF,
    ∴AF=EF;

    (2)连接AC,
    ∵M和N分别是AE和EF的中点,点G为CE中点,
    ∴MN=AF,NG=CF,即MN+NG=(AF+CF),
    当点F与菱形ABCD对角线交点O重合时,
    AF+CF最小,即此时MN+NG最小,
    ∵菱形ABCD边长为1,∠ABC=60°,
    ∴△ABC为等边三角形,AC=AB=1,
    即MN+NG的最小值为;


    (3)不变,理由是:
    延长EF,交DC于H,
    ∵∠CFH=∠FCE+∠FEC,∠AFH=∠FEA+∠FEA,
    ∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,
    ∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:
    ∠AFD=∠CFD=∠AFC,
    ∵AF=CF=EF,
    ∴∠AEF=∠EAF,∠FEC=∠FCE,
    ∴∠AFD=∠FAE+∠ABF=∠FEA+∠CEF,
    ∴∠ABF=∠CEF,
    ∵∠ABC=60°,
    ∴∠ABF=∠CEF=30°,为定值.

    2.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.
    (1)观察猜想.
    图1中,线段NM、NP的数量关系是 NM=NP ,∠MNP的大小为 60° .
    (2)探究证明
    把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;
    (3)拓展延伸
    把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.

    【分析】(1)先证明由AB=AC,AD=AE,得BD=CE,再由三角形的中位线定理得NM与NP的数量关系,由平行线性质得∠MNP的大小;
    (2)先证明△ABD≌△ACE得BD=CE,再由三角形的中位线定理得NM=NP,由平行线性质得∠MNP=60°,再根据等边三角形的判定定理得结论;
    (3)由BD≤AB+AD,得MN≤2,再由等边三角形的面积公式得△MNP的面积关于MN的函数关系式,再由函数性质求得最大值便可.
    【解答】解:(1)∵AB=AC,AD=AE,
    ∴BD=CE,
    ∵点M、N、P分别为DE、BE、BC的中点,
    ∴MN=BD,PN=CE,MN∥AB,PN∥AC,
    ∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,
    ∴∠MNE+∠ENP=∠ABE+∠AEB,
    ∵∠ABE+∠AEB=180°﹣∠BAE=60°,
    ∴∠MNP=60°,
    故答案为:NM=NP;60°;

    (2)△MNP是等边三角形.
    理由 如下:由旋转可得,∠BAD=∠CAE,
    又∵AB=AC,AD=AE,
    ∴△ABD≌△ACE(SAS),
    ∴BD=CE,∠ABD=∠ACE,
    ∵点M、N、P分别为DE、BE、BC的中点.
    ∴MN=BD,PN=CE,MN∥BD,PN∥CE,
    ∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,
    ∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,
    ∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,
    ∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,
    ∴△MNP是等边三角形;
    (3)根据题意得,BD≤AB+AD,即BD≤4,
    ∴MN≤2,
    ∴△MNP的面积==,
    ∴△MNP的面积的最大值为.
    3.(2020•烟台)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
    (1)求抛物线的表达式;
    (2)当线段DF的长度最大时,求D点的坐标;
    (3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.

    【分析】(1)点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),即可求解;
    (2)点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,即可求解;
    (3)以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即可求解.
    【解答】解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),
    则x==(2t﹣t),解得:t=1,
    故点A、B的坐标分别为(2,0)、(﹣1,0),
    则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,
    解得:a=﹣1,
    故抛物线的表达式为:y=﹣x2+x+2;

    (2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),
    由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,
    设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),
    则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,
    ∵﹣1<0,故DF有最大值,DF最大时m=1,
    ∴点D(1,2);

    (3)存在,理由:
    点D(m,﹣m2+m+2)(m>0),则OE=m,DE=﹣m2+m+2,
    以点O,D,E为顶点的三角形与△BOC相似,
    则,即=2或,即=2或,
    解得:m=1或﹣2(舍去)或或(舍去),
    故m=1或.
    4.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
    (1)求抛物线的表达式;
    (2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
    (3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.

    【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
    (2)PN=PQsin45°=(﹣m2+m)=﹣(m﹣2)2+,即可求解;
    (3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.
    【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,
    故抛物线的表达式为:y=﹣x2+x+4;

    (2)由抛物线的表达式知,点C(0,4),
    由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;
    设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),
    ∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,
    ∵OB=OC,故∠ABC=∠OCB=45°,
    ∴∠PQN=∠BQM=45°,
    ∴PN=PQsin45°=(﹣m2+m)=﹣(m﹣2)2+,
    ∵﹣<0,故当m=2时,PN有最大值为;

    (3)存在,理由:
    点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,
    ①当AC=CQ时,过点Q作QE⊥y轴于点E,

    则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,
    解得:m=±(舍去负值),
    故点Q(,);
    ②当AC=AQ时,则AQ=AC=5,
    在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),
    故点Q(1,3);
    ③当CQ=AQ时,则2m2=[m﹣(﹣3)]2+(﹣m+4)2,解得:m=(舍去);
    综上,点Q的坐标为(1,3)或(,).
    5.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.
    (1)求抛物线的表达式;
    (2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
    (3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.

    【分析】(1)直接将A(﹣2,0)和点B(8,0)代入y=ax2+bx+8(a≠0),解出a,b的值即可得出答案;
    (2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;
    (3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM三种情况讨论结合图形得出边之间的关系,即可得出答案.
    【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),
    ∴,解得,
    ∴抛物线解析式为:;

    (2)当x=0时,y=8,
    ∴C(0,8),
    ∴直线BC解析式为:y=﹣x+8,
    ∵,
    ∴,
    过点P作PG⊥x轴,交x轴于点G,交BC于点F,
    设,
    ∴F(t,﹣t+8),
    ∴,
    ∴,
    即,
    ∴t1=2,t2=6,
    ∴P1(2,12),P2(6,8);


    (3)∵C(0,8),B(8,0),∠COB=90°,
    ∴△OBC为等腰直角三角形,
    抛物线的对称轴为,
    ∴点E的横坐标为3,
    又∵点E在直线BC上,
    ∴点E的纵坐标为5,
    ∴E(3,5),
    设,
    ①当MN=EM,∠EMN=90°,
    △NME~△COB,则,
    解得或(舍去),
    ∴此时点M的坐标为(3,8),

    ②当ME=EN,当∠MEN=90°时,
    则,解得:或(舍去),
    ∴此时点M的坐标为;

    ③当MN=EN,∠MNE=90°时,
    连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,
    此时四边形CMNE为正方形,
    ∴CM=CE,
    ∵C(0,8),E(3,5),M(3,m),
    ∴,
    ∴,
    解得:m1=11,m2=5(舍去),
    此时点M的坐标为(3,11);

    故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),或(3,11).
    6.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
    (1)求二次函数的表达式;
    (2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
    (3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
    ①当m=时,求点P的坐标;
    ②求m的最大值.

    【分析】(1)函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),将点A、B、C的坐标代入抛物线表达式,即可求解;
    (2)证明△BCD≌△BCM(AAS),则CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),即可求解;
    (3)过点P作PN∥x轴交BC于点N,则△PFN∽△AFB,则,而S△BFP=mS△BAF,则=,解得:m=PN,即可求解.
    【解答】解:(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),
    将点A、B、C的坐标代入抛物线表达式得,解得,
    故抛物线的表达式为:y=x2﹣2x﹣3;

    (2)设直线BE交y轴于点M,

    从抛物线表达式知,抛物线的对称轴为x=1,
    ∵CD∥x轴交抛物线于点D,故点D(2,﹣3),
    由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCD=45°,
    ∵BC恰好平分∠DBE,故∠MBC=∠DBC,
    而BC=BC,
    故△BCD≌△BCM(AAS),
    ∴CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),
    设直线BE的表达式为:y=kx+b,则,解得,
    故直线BE的表达式为:y=x﹣1;

    (3)过点P作PN∥x轴交BC于点N,

    则△PFN∽△AFB,则,
    而S△BFP=mS△BAF,则=,解得:m=PN,
    ①当m=时,则PN=2,
    设点P(t,t2﹣2t﹣3),
    由点B、C的坐标知,直线BC的表达式为:y=x﹣3,当x=t﹣2时,y=t﹣5,故点N(t﹣2,t﹣5),
    故t﹣5=t2﹣2t﹣3,
    解得:t=1或2,故点P(2,﹣3)或(1,﹣4);
    ②m=PN=[t﹣(t2﹣2t)]=﹣(t﹣)2+,
    ∵<0,故m的最大值为.
    7.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
    (1)求这条抛物线对应的函数表达式;
    (2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
    (3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.

    【分析】(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②即可求解;
    (2)△ADR的面积是▱OABC的面积的,则×AD×|yR|=×OA×OB,则×6×|yR|=×2×,即可求解;
    (3)∠PQE=45°,故∠PRE=90°,则△PRE为等腰直角三角形,当直线MD上存在唯一的点Q,则RQ⊥MD,即可求解.
    【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,
    将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,
    联立①②并解得,
    故抛物线的表达式为:y=﹣x2+x+③;

    (2)由抛物线的表达式得,点M(1,3)、点D(4,0);
    ∵△ADR的面积是▱OABC的面积的,
    ∴×AD×|yR|=×OA×OB,则×6×|yR|=×2×,解得:yR=±④,
    联立④③并解得或,
    故点R的坐标为(1+,﹣)或(1,﹣)或(1,)或(1﹣,);

    (3)①当点P与M重合时,存在唯一的点Q(4,0)与D重合,此时符合题意,P(1,3).
    ②根据对称性可知.P(1,﹣3),Q与D重合时,也符合题意.
    ③当点P是EM的中点,点Q是DM的中点时,也符合题意,此时P(1,)
    综上所述,满足条件的点P的坐标为(1,3)或(1,﹣3)或(1,).
    8.(2020•威海)发现规律
    (1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.

    (2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.
    应用结论
    (3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.

    【分析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE,由三角形内角和定理可求解;
    (2)通过证明△ABC∽△ADE,可得∠BAC=∠DAE,,可证△ABD∽△ACE,可得∠ABD=∠ACE,由外角性质可得∠BFC=∠BAC,由三角形内角和定理可求解;
    (3)由旋转的性质可得△MNK是等边三角形,可得MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,可得∠OMQ=60°,OK=NQ,MO=MQ,则当NQ为最小值时,OK有最小值,由垂线段最短可得当QN⊥y轴时,NQ有最小值,由直角三角形的性质可求解.
    【解答】解:(1)如图①,
    ∵△ABC,△ADE是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE(SAS),
    ∴∠ABD=∠ACE,
    ∵∠ABD+∠EBC=∠ABC=60°,
    ∴∠ACE+∠EBC=60°,
    ∴∠BFC=180°﹣∠EBC﹣∠ACE﹣∠ACB=60°;
    (2)如图②,
    ∵∠ABC=∠ADE=α,∠ACB=∠AED=β,
    ∴△ABC∽△ADE,
    ∴∠BAC=∠DAE,,
    ∴∠BAD=∠CAE,,
    ∴△ABD∽△ACE,
    ∴∠ABD=∠ACE,
    ∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,
    ∴∠BFC=∠BAC,
    ∵∠BAC+∠ABC+∠ACB=180°,
    ∴∠BFC+α+β=180°,
    ∴∠BFC=180°﹣α﹣β;
    (3)∵将线段MN绕点M逆时针旋转60°得到线段MK,
    ∴MN=NK,∠MNK=60°,
    ∴△MNK是等边三角形,
    ∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,
    如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,

    ∴△MOK≌△MQN,∠OMQ=60°,
    ∴OK=NQ,MO=MQ,
    ∴△MOQ是等边三角形,
    ∴∠QOM=60°,
    ∴∠NOQ=30°,
    ∵OK=NQ,
    ∴当NQ为最小值时,OK有最小值,
    由垂线段最短可得:当QN⊥y轴时,NQ有最小值,
    此时,QN⊥y轴,∠NOQ=30°,
    ∴NQ=OQ=,
    ∴线段OK长度的最小值为.
    9.(2020•青岛)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).
    解答下列问题:
    (1)当t为何值时,点M在线段CQ的垂直平分线上?
    (2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;
    (3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;
    (4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.

    【分析】(1)由平行线分线段成比例可得,可求CM的长,由线段垂直平分线的性质可得CM=MQ,即可求解;
    (2)利用锐角三角函数分别求出PH=t,QN=6﹣t,由矩形的性质可求解;
    (3)利用面积的和差关系可得S=S梯形GMFH﹣S△CMQ﹣S△HFQ,即可求解;
    (4)连接PF,延长AC交EF于K,由“SSS”可证△ABC≌△EBF,可得∠E=∠CAB,可证∠ABC=∠EKC=90°,由面积法可求CK的长,由角平分线的性质可求解.
    【解答】解:(1)∵AB∥CD,
    ∴,
    ∴,
    ∴CM=,
    ∵点M在线段CQ的垂直平分线上,
    ∴CM=MQ,
    ∴1×t=,
    ∴t=;
    (2)如图1,过点Q作QN⊥AF于点N,

    ∵∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,
    ∴AC===10cm,EF===10cm,
    ∵CE=2cm,CM=cm,
    ∴EM===,
    ∵sin∠PAH=sin∠CAB,
    ∴,
    ∴,
    ∴PH=t,
    同理可求QN=6﹣t,
    ∵四边形PQNH是矩形,
    ∴PH=NQ,
    ∴6﹣t=t,
    ∴t=3;
    ∴当t=3时,四边形PQNH为矩形;
    (3)如图2,过点Q作QN⊥AF于点N,

    由(2)可知QN=6﹣t,
    ∵cos∠PAH=cos∠CAB,
    ∴,
    ∴,
    ∴AH=t,
    ∵四边形QCGH的面积为S=S梯形GMFH﹣S△CMQ﹣S△HFQ,
    ∴S=×6×(8﹣t+6+8﹣t+)﹣××[6﹣(6﹣t)]﹣×(6﹣t)(8﹣t+6)=﹣t2+t+;
    (4)存在,
    理由如下:如图3,连接PF,延长AC交EF于K,

    ∵AB=BE=8cm,BC=BF=6cm,AC=EF=10cm,
    ∴△ABC≌△EBF(SSS),
    ∴∠E=∠CAB,
    又∵∠ACB=∠ECK,
    ∴∠ABC=∠EKC=90°,
    ∵S△CEM=×EC×CM=×EM×CK,
    ∴CK==,
    ∵PF平分∠AFE,PH⊥AF,PK⊥EF,
    ∴PH=PK,
    ∴t=10﹣2t+,
    ∴t=,
    ∴当t=时,使点P在∠AFE的平分线上.
    10.(2020•济宁)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).
    (1)求证:△AEH≌△AGH;
    (2)当AB=12,BE=4时.
    ①求△DGH周长的最小值;
    ②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.

    【分析】(1)先判断出△ABC是等边三角形,进而判断出∠ACD=∠ABC,判断出△ABE≌△ACG,即可得出结论;
    (2)①先判断出EH+DH最小时,△AEH的周长最小,在Rt△DCM中,求出CM=6,DM=6,在Rt△DME中,
    根据勾股定理得,DE=4,即可得出结论;
    ②分两种情况:Ⅰ、当OH与线段AE相交时,判断出点N是AE的中点,即可得出结论;
    Ⅱ、当OH与CE相交时,判断出点Q是CE的中点,再构造直角三角形,即可得出结论.
    【解答】(1)证明:∵四边形ABCD是菱形,
    ∴AB=BC,
    ∵AB=AC,
    ∴AB=BC=AC,
    ∴△ABC是等边三角形,
    ∴∠ABC=60°,
    ∴∠BCD=120°,
    ∵AC是菱形ABCD的对角线,
    ∴∠ACD=∠BCD=60°=∠ABC,
    ∵BE=CG,
    ∴△ABE≌△ACG(SAS),
    ∴AE=AG,
    ∵AF平分∠EAG,
    ∴∠EAF=∠GAF,
    ∵AH=AH,
    ∴△AEH≌△AGH(SAS);

    (2)①如图1,
    过点D作DM⊥BC交BC的延长线于M,连接DE,
    ∵AB=12,BE=4,
    ∴CG=4,
    ∴CE=DG=12﹣4=8,
    由(1)知,△AEH≌△AGH,
    ∴EH=HG,
    ∴l△DGH=DH+GH+DG=DH+HE+8,
    要使△DGH的周长最小,则EH+DH最小,最小为DE,
    在Rt△DCM中,∠DCM=180°﹣120°=60°,CD=AB=12,
    ∴CM=6,
    ∴DM=CM=6,
    在Rt△DME中,EM=CE+CM=14,
    根据勾股定理得,DE===4,
    ∴△DGH周长的最小值为4+8;

    ②Ⅰ、当OH与线段AE相交时,交点记作点N,如图2,连接CN,
    ∴点O是AC的中点,
    ∴S△AON=S△CON=S△ACN,
    ∵三角形的面积与四边形的面积比为1:3,
    ∴=,
    ∴S△CEN=S△ACN,
    ∴AN=EN,
    ∵点O是AC的中点,
    ∴ON∥CE,
    ∴;

    Ⅱ、当OH与线段CE相交时,交点记作Q,如图3,
    连接AQ,FG,∵点O是AC的中点,
    ∴S△AOQ=S△COQ=S△ACQ,
    ∵三角形的面积与四边形的面积比为1:3,
    ∴,
    ∴S△AEQ=S△ACQ,
    ∴CQ=EQ=CE=(12﹣4)=4,
    ∵点O是AC的中点,
    ∴OQ∥AE,设FQ=x,
    ∴EF=EQ+FQ=4+x,CF=CQ﹣FQ=4﹣x,
    由(1)知,AE=AG,
    ∵AF是∠EAG的角平分线,
    ∴∠EAF=∠GAF,
    ∵AF=AF,
    ∴△AEF≌△AGF(SAS),
    ∴FG=EF=4+x,
    过点G作GP⊥BC交BC的延长线于P,
    在Rt△CPG中,∠PCG=60°,CG=4,
    ∴CP=CG=2,PG=CP=2,
    ∴PF=CF+CP=4﹣x+2=6﹣x,
    在Rt△FPG中,根据勾股定理得,PF2+PG2=FG2,
    ∴(6﹣x)2+(2)2=(4+x)2,
    ∴x=,
    ∴FQ=,EF=4+=,
    ∵OQ∥AE,
    ∴==,
    即的值为或.



    11.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
    探究:
    (1)线段PA与PM的数量关系为 PA=PM ,其理由为: 线段垂直平分线上的点与这条线段两个端点的距离相等 .
    (2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
    M的坐标

    (﹣2,0)
    (0,0)
    (2,0)
    (4,0)

    P的坐标

     (﹣2,﹣2) 
    (0,﹣1)
    (2,﹣2)
     (4,﹣5) 

    猜想:
    (3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是 抛物线 .
    验证:
    (4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
    应用:
    (5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.

    【分析】(1)由题意可得GH是AM的垂直平分线,由线段垂直平分线的性质可求解;
    (2)由(1)可知:PA=PM,利用两点距离公式可求点P坐标;
    (3)依照题意,画出图象;
    (4)由两点距离公式可得﹣y=,可求y关于x的函数解析式;
    (5)由两点距离公式可求BC=OB=OC,可证△BOC是等边三角形,可得∠BOC=60°,以O为圆心,OB为半径作圆O,交抛物线L于点E,连接BE,CE,可得∠BEC=30°,则当点D在点E下方时,∠BDC<30°,求出点E的纵坐标即可求解.
    【解答】解:(1)∵分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,
    ∴GH是AM的垂直平分线,
    ∵点P是GH上一点,
    ∴PA=PM(线段垂直平分线上的点与这条线段两个端点的距离相等),
    故答案为:PA=PM,线段垂直平分线上的点与这条线段两个端点的距离相等;
    (2)当点M(﹣2,0)时,设点P(﹣2,a),(a<0)
    ∵PA=PM,
    ∴﹣a=,
    ∴a=﹣2,
    ∴点P(﹣2,﹣2),
    当点M(4,0)时,设点P(4,b),(b<0)
    ∵PA=PM,
    ∴﹣b=,
    ∴b=﹣5,
    ∴点P(4,﹣5),
    故答案为:(﹣2,﹣2),(4,﹣5);
    (3)依照题意,画出图象,

    猜想曲线L的形状为抛物线,
    故答案为:抛物线;
    (4)∵PA=PM,点P的坐标是(x,y),(y<0),
    ∴﹣y=,
    ∴y=﹣x2﹣1;
    (5)∵点B(﹣1,),C(1,),
    ∴BC=2,OB==2,OC==2,
    ∴BC=OB=OC,
    ∴△BOC是等边三角形,
    ∴∠BOC=60°,
    如图3,以O为圆心,OB为半径作圆O,交抛物线L于点E,连接BE,CE,

    ∴∠BEC=30°,
    设点E(m,n),
    ∵点E在抛物线上,
    ∴n=﹣m2﹣1,
    ∵OE=OB=2,
    ∴=2,
    ∴n1=2﹣2,n2=2+2(舍去),
    如图3,可知当点D在点E下方时,∠BDC<30°,
    ∴点D的纵坐标yD的取值范围为yD<2﹣2.
    12.(2020•菏泽)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.
    (1)求抛物线的函数表达式;
    (2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;
    (3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.

    【分析】(1)根据OA=2,OB=4确定点A和B的坐标,代入抛物线的解析式列方程组解出即可;
    (2)如图1,过D作DG⊥x轴于G,交BC于H,利用待定系数法求直线BC的解析式,设D(x,x2﹣x﹣6),则H(x,x﹣6),表示DH的长,根据△BCD的面积是,列方程可得x的值,因为D在对称轴的右侧,所以x=1不符合题意,舍去,利用三角形面积公式可得结论;
    (3)分两种情况:N在x轴的上方和下方,根据y=确定N的坐标,并正确画图.
    【解答】解:(1)∵OA=2,OB=4,
    ∴A(﹣2,0),B(4,0),
    把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣6中得:,
    ∴抛物线的解析式为:y=x2﹣x﹣6;

    (2)如图1,过D作DG⊥x轴于G,交BC于H,

    当x=0时,y=﹣6,
    ∴C(0,﹣6),
    设BC的解析式为:y=kx+b,
    则,解得:,
    ∴BC的解析式为:y=x﹣6,
    设D(x,x2﹣x﹣6),则H(x,x﹣6),
    ∴DH=x﹣6﹣(x2﹣x﹣6)=﹣,
    ∵△BCD的面积是,
    ∴,
    ∴,
    解得:x=1或3,
    ∵点D在直线l右侧的抛物线上,
    ∴D(3,﹣),
    ∴△ABD的面积===;

    (3)分两种情况:
    ①如图2,N在x轴的上方时,四边形MNBD是平行四边形,

    ∵B(4,0),D(3,﹣),且M在x轴上,
    ∴N的纵坐标为,
    当y=时,即x2﹣x﹣6=,
    解得:x=1+或1﹣,
    ∴N(1﹣,)或(1+,);
    ②如图3,点N在x轴的下方时,四边形BDNM是平行四边形,此时M与O重合,

    ∴N(﹣1,﹣);
    综上,点N的坐标为:(1﹣,)或(1+,)或(﹣1,﹣).
    13.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.
    (1)求这条抛物线的函数解析式;
    (2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
    (3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.

    【分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可.
    (2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.
    (3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.
    【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,
    ∵抛物线经过B(0,﹣),
    ∴﹣=4a﹣1,
    ∴a=,
    ∴抛物线的解析式为y=(x﹣2)2﹣1.

    (2)证明:∵P(m,n),
    ∴n=(m﹣2)2﹣1=m2﹣m﹣,
    ∴P(m,m2﹣m﹣),
    ∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,
    ∵F(2,1),
    ∴PF==,
    ∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,
    ∴d2=PF2,
    ∴PF=d.

    (3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.
    ∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,
    ∴DQ+QF的值最小时,△DFQ的周长最小,
    ∵QF=QH,
    ∴DQ+DF=DQ+QH,
    根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,
    ∴DQ+QH的最小值为6,
    ∴△DFQ的周长的最小值为2+6,此时Q(4,﹣).

    14.(2020•聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
    (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
    (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
    (3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.

    【分析】(1)由题意得出方程组,求出二次函数的解析式为y=﹣x2+3x+4,则C(0,4),由待定系数法求出BC所在直线的表达式即可
    (2)证DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,由二次函数解析式求出点D的坐标,由直线BC的解析式求出点E的坐标,则DE=,设点P的横坐标为t,则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),由DE=PF得出方程,解方程进而得出答案;
    (3)由平行线的性质得出∠CED=∠CFP,当∠PCF=∠CDE时,△PCF∽△CDE,则=,得出方程,解方程即可.
    【解答】解:(1)将点A(﹣1,0),B(4,0),代入y=ax2+bx+4,
    得:,
    解得:,
    ∴二次函数的表达式为:y=﹣x2+3x+4,
    当x=0时,y=4,
    ∴C(0,4),
    设BC所在直线的表达式为:y=mx+n,
    将C(0,4)、B(4,0)代入y=mx+n,
    得:,
    解得:,
    ∴BC所在直线的表达式为:y=﹣x+4;
    (2)∵DE⊥x轴,PF⊥x轴,
    ∴DE∥PF,
    只要DE=PF,四边形DEFP即为平行四边形,
    ∵y=﹣x2+3x+4=﹣(x﹣)2+,
    ∴点D的坐标为:(,),
    将x=代入y=﹣x+4,即y=﹣+4=,
    ∴点E的坐标为:(,),
    ∴DE=﹣=,
    设点P的横坐标为t,
    则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),
    ∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,
    由DE=PF得:﹣t2+4t=,
    解得:t1=(不合题意舍去),t2=,
    当t=时,﹣t2+3t+4=﹣()2+3×+4=,
    ∴点P的坐标为(,);
    (3)存在,理由如下:
    如图2所示:
    由(2)得:PF∥DE,
    ∴∠CED=∠CFP,
    又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,
    ∴∠PCF≠∠DCE,
    ∴只有∠PCF=∠CDE时,△PCF∽△CDE,
    ∴=,
    ∵C(0,4)、E(,),
    ∴CE==,
    由(2)得:DE=,PF=﹣t2+4t,F的坐标为:(t,﹣t+4),
    ∴CF==t,
    ∴=,
    ∵t≠0,
    ∴(﹣t+4)=3,
    解得:t=,
    当t=时,﹣t2+3t+4=﹣()2+3×+4=,
    ∴点P的坐标为:(,).



    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:0份资料
    • 充值学贝下载 90%的用户选择 本单免费
    • 扫码直接下载
    选择教习网的 4 个理由
    • 更专业

      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿

    • 更丰富

      涵盖课件/教案/试卷/素材等各种教学资源;500万+优选资源 ⽇更新5000+

    • 更便捷

      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤

    • 真低价

      超⾼性价⽐, 让优质资源普惠更多师⽣

    开票申请 联系客服
    本次下载需要:0学贝 0学贝 账户剩余:0学贝
    本次下载需要:0学贝 原价:0学贝 账户剩余:0学贝
    了解VIP特权
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送

        扫码支付后直接下载

        0元

        扫码支付后直接下载

        使用学贝下载资料比扫码直接下载优惠50%
        充值学贝下载,本次下载免费
        了解VIP特权
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付(支持花呗)

        到账0学贝
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付 (支持花呗)

          下载成功

          Ctrl + Shift + J 查看文件保存位置

          若下载不成功,可重新下载,或查看 资料下载帮助

          本资源来自成套资源

          更多精品资料

          正在打包资料,请稍候…

          预计需要约10秒钟,请勿关闭页面

          服务器繁忙,打包失败

          请联系右侧的在线客服解决

          单次下载文件已超2GB,请分批下载

          请单份下载或分批下载

          支付后60天内可免费重复下载

          我知道了
          正在提交订单

          欢迎来到教习网

          • 900万优选资源,让备课更轻松
          • 600万优选试题,支持自由组卷
          • 高质量可编辑,日均更新2000+
          • 百万教师选择,专业更值得信赖
          微信扫码注册
          qrcode
          二维码已过期
          刷新

          微信扫码,快速注册

          还可免费领教师专享福利「樊登读书VIP」

          手机号注册
          手机号码

          手机号格式错误

          手机验证码 获取验证码

          手机验证码已经成功发送,5分钟内有效

          设置密码

          6-20个字符,数字、字母或符号

          注册即视为同意教习网「注册协议」「隐私条款」
          QQ注册
          手机号注册
          微信注册

          注册成功

          下载确认

          下载需要:0 张下载券

          账户可用:0 张下载券

          立即下载

          如何免费获得下载券?

          加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

          返回
          顶部